Tue, Dec 9, 2025

Propagation anomalies - 2025-12-09

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-09' AND slot_start_date_time < '2025-12-09'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-09' AND slot_start_date_time < '2025-12-09'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-09' AND slot_start_date_time < '2025-12-09'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-09' AND slot_start_date_time < '2025-12-09'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-09' AND slot_start_date_time < '2025-12-09'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-09' AND slot_start_date_time < '2025-12-09'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-09' AND slot_start_date_time < '2025-12-09'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-09' AND slot_start_date_time < '2025-12-09'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,146
MEV blocks: 6,460 (90.4%)
Local blocks: 686 (9.6%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1728.1 + 21.47 × blob_count (R² = 0.012)
Residual σ = 626.2ms
Anomalies (>2σ slow): 223 (3.1%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13206169 0 8062 1728 +6334 Local View
13205729 0 5349 1728 +3621 Local View
13203393 0 5168 1728 +3440 Local View
13202848 4 5222 1814 +3408 Local View
13207365 5 4983 1835 +3148 EthGas View
13206931 0 4780 1728 +3052 Local View
13205056 0 4488 1728 +2760 Local View
13203330 0 4487 1728 +2759 Local View
13207060 0 4472 1728 +2744 Local View
13201855 1 4412 1750 +2662 Local View
13207229 0 4377 1728 +2649 Local View
13203242 0 4362 1728 +2634 Local View
13206589 0 4341 1728 +2613 Local View
13203920 0 4267 1728 +2539 Local View
13202847 9 4375 1921 +2454 Local View
13206320 0 3996 1728 +2268 Local View
13207547 4 3938 1814 +2124 EthGas View
13205690 6 3968 1857 +2111 EthGas View
13206848 0 3838 1728 +2110 Local View
13205872 3 3856 1793 +2063 EthGas View
13208303 0 3668 1728 +1940 Local View
13201729 6 3793 1857 +1936 Flashbots View
13205636 3 3719 1793 +1926 EthGas View
13206148 10 3859 1943 +1916 BloXroute Max Profit View
13204032 4 3727 1814 +1913 Local View
13203207 3 3667 1793 +1874 Local View
13204849 6 3731 1857 +1874 Titan Relay View
13205923 14 3802 2029 +1773 Local View
13202624 6 3567 1857 +1710 BloXroute Regulated View
13205659 4 3512 1814 +1698 BloXroute Regulated View
13205869 6 3550 1857 +1693 BloXroute Regulated View
13201727 3 3482 1793 +1689 BloXroute Regulated View
13206215 3 3478 1793 +1685 EthGas View
13206798 0 3393 1728 +1665 Ultra Sound View
13207526 9 3564 1921 +1643 Agnostic Gnosis View
13208178 6 3492 1857 +1635 BloXroute Regulated View
13203820 8 3523 1900 +1623 BloXroute Regulated View
13203414 0 3341 1728 +1613 Ultra Sound View
13207961 6 3452 1857 +1595 Agnostic Gnosis View
13206015 7 3472 1878 +1594 BloXroute Regulated View
13206289 6 3444 1857 +1587 Local View
13205572 10 3516 1943 +1573 EthGas View
13208062 4 3384 1814 +1570 Ultra Sound View
13204306 4 3382 1814 +1568 Ultra Sound View
13204584 3 3350 1793 +1557 Titan Relay View
13206041 9 3467 1921 +1546 BloXroute Regulated View
13204625 4 3358 1814 +1544 BloXroute Regulated View
13203407 7 3417 1878 +1539 Ultra Sound View
13201425 1 3286 1750 +1536 Ultra Sound View
13207527 10 3479 1943 +1536 BloXroute Max Profit View
13201337 3 3324 1793 +1531 Local View
13204511 3 3322 1793 +1529 BloXroute Max Profit View
13203360 6 3383 1857 +1526 Agnostic Gnosis View
13203488 3 3317 1793 +1524 Agnostic Gnosis View
13206491 4 3336 1814 +1522 Flashbots View
13204772 4 3325 1814 +1511 Titan Relay View
13205417 9 3427 1921 +1506 BloXroute Regulated View
13201218 6 3357 1857 +1500 Titan Relay View
13202760 0 3228 1728 +1500 BloXroute Regulated View
13203155 9 3421 1921 +1500 Ultra Sound View
13204923 9 3417 1921 +1496 Titan Relay View
13202589 7 3374 1878 +1496 BloXroute Regulated View
13201623 3 3284 1793 +1491 BloXroute Regulated View
13204765 8 3385 1900 +1485 Aestus View
13204949 8 3383 1900 +1483 Ultra Sound View
13203277 9 3404 1921 +1483 Ultra Sound View
13207376 12 3461 1986 +1475 BloXroute Max Profit View
13208185 1 3221 1750 +1471 BloXroute Regulated View
13207983 7 3348 1878 +1470 BloXroute Regulated View
13201468 7 3347 1878 +1469 Titan Relay View
13208373 6 3321 1857 +1464 BloXroute Max Profit View
13204933 5 3294 1835 +1459 BloXroute Max Profit View
13205786 3 3251 1793 +1458 BloXroute Regulated View
13203726 7 3334 1878 +1456 Titan Relay View
13208258 0 3183 1728 +1455 BloXroute Regulated View
13201469 6 3305 1857 +1448 Flashbots View
13205119 3 3240 1793 +1447 BloXroute Regulated View
13204864 6 3302 1857 +1445 BloXroute Regulated View
13205023 3 3234 1793 +1441 BloXroute Max Profit View
13206315 11 3405 1964 +1441 Ultra Sound View
13204720 0 3167 1728 +1439 Titan Relay View
13205601 0 3166 1728 +1438 Aestus View
13207067 4 3242 1814 +1428 BloXroute Regulated View
13205591 4 3238 1814 +1424 BloXroute Regulated View
13205743 3 3214 1793 +1421 EthGas View
13206534 6 3277 1857 +1420 BloXroute Max Profit View
13201245 9 3339 1921 +1418 Ultra Sound View
13208356 6 3272 1857 +1415 BloXroute Regulated View
13208302 3 3204 1793 +1411 Titan Relay View
13205993 3 3204 1793 +1411 Ultra Sound View
13201346 3 3203 1793 +1410 Ultra Sound View
13202577 8 3310 1900 +1410 Titan Relay View
13203378 6 3267 1857 +1410 BloXroute Regulated View
13201632 8 3309 1900 +1409 Flashbots View
13207500 6 3263 1857 +1406 BloXroute Regulated View
13203143 3 3196 1793 +1403 Ultra Sound View
13207246 0 3130 1728 +1402 Aestus View
13205752 7 3279 1878 +1401 BloXroute Regulated View
13206257 15 3448 2050 +1398 EthGas View
13204416 4 3210 1814 +1396 Agnostic Gnosis View
13202129 8 3295 1900 +1395 BloXroute Regulated View
13205312 9 3316 1921 +1395 Agnostic Gnosis View
13205236 3 3187 1793 +1394 Ultra Sound View
13207173 2 3165 1771 +1394 Titan Relay View
13204971 8 3292 1900 +1392 BloXroute Max Profit View
13204698 3 3183 1793 +1390 Ultra Sound View
13203848 7 3263 1878 +1385 BloXroute Regulated View
13201994 6 3240 1857 +1383 Ultra Sound View
13206530 9 3302 1921 +1381 BloXroute Regulated View
13204414 8 3279 1900 +1379 Local View
13206228 4 3193 1814 +1379 Titan Relay View
13206456 4 3192 1814 +1378 BloXroute Max Profit View
13205341 4 3192 1814 +1378 BloXroute Regulated View
13204894 5 3213 1835 +1378 BloXroute Max Profit View
13204661 3 3168 1793 +1375 BloXroute Regulated View
13204492 3 3168 1793 +1375 Ultra Sound View
13206995 3 3167 1793 +1374 Ultra Sound View
13207454 3 3162 1793 +1369 BloXroute Max Profit View
13207400 0 3097 1728 +1369 BloXroute Regulated View
13201427 9 3289 1921 +1368 BloXroute Regulated View
13201634 3 3159 1793 +1366 Aestus View
13203662 3 3157 1793 +1364 Ultra Sound View
13207963 4 3176 1814 +1362 Titan Relay View
13207251 8 3259 1900 +1359 BloXroute Regulated View
13204979 6 3215 1857 +1358 BloXroute Max Profit View
13207286 6 3213 1857 +1356 BloXroute Regulated View
13205780 7 3233 1878 +1355 BloXroute Max Profit View
13203941 7 3232 1878 +1354 BloXroute Regulated View
13204324 6 3209 1857 +1352 BloXroute Max Profit View
13206362 4 3158 1814 +1344 Ultra Sound View
13207316 3 3136 1793 +1343 Agnostic Gnosis View
13206014 10 3286 1943 +1343 BloXroute Max Profit View
13207634 5 3178 1835 +1343 Agnostic Gnosis View
13204213 3 3135 1793 +1342 Agnostic Gnosis View
13208349 0 3070 1728 +1342 Local View
13204886 6 3197 1857 +1340 BloXroute Max Profit View
13202357 9 3259 1921 +1338 BloXroute Max Profit View
13204293 7 3214 1878 +1336 Agnostic Gnosis View
13207191 3 3128 1793 +1335 BloXroute Max Profit View
13205370 3 3127 1793 +1334 Flashbots View
13202587 3 3124 1793 +1331 BloXroute Max Profit View
13204453 3 3123 1793 +1330 Aestus View
13203907 3 3123 1793 +1330 Titan Relay View
13208339 6 3187 1857 +1330 BloXroute Max Profit View
13205555 9 3251 1921 +1330 BloXroute Max Profit View
13207075 7 3206 1878 +1328 BloXroute Max Profit View
13205617 7 3206 1878 +1328 BloXroute Max Profit View
13203128 3 3118 1793 +1325 BloXroute Regulated View
13207991 8 3224 1900 +1324 Flashbots View
13205660 7 3202 1878 +1324 BloXroute Regulated View
13202588 3 3116 1793 +1323 Agnostic Gnosis View
13202376 5 3157 1835 +1322 BloXroute Regulated View
13206570 3 3114 1793 +1321 BloXroute Max Profit View
13206637 6 3178 1857 +1321 Ultra Sound View
13208222 6 3177 1857 +1320 BloXroute Max Profit View
13204088 7 3197 1878 +1319 Ultra Sound View
13205225 7 3197 1878 +1319 Ultra Sound View
13207714 10 3261 1943 +1318 BloXroute Max Profit View
13205675 3 3110 1793 +1317 BloXroute Max Profit View
13203123 4 3131 1814 +1317 EthGas View
13207635 5 3151 1835 +1316 BloXroute Max Profit View
13204063 6 3172 1857 +1315 Flashbots View
13201495 0 3043 1728 +1315 Ultra Sound View
13203057 9 3236 1921 +1315 Ultra Sound View
13204811 7 3192 1878 +1314 BloXroute Max Profit View
13202484 3 3106 1793 +1313 Ultra Sound View
13202192 6 3170 1857 +1313 Ultra Sound View
13201732 3 3105 1793 +1312 Aestus View
13208248 3 3105 1793 +1312 Aestus View
13205609 4 3125 1814 +1311 BloXroute Max Profit View
13207186 3 3103 1793 +1310 Titan Relay View
13206511 9 3231 1921 +1310 Flashbots View
13205814 3 3102 1793 +1309 Aestus View
13208384 1 3058 1750 +1308 BloXroute Max Profit View
13207532 5 3143 1835 +1308 Ultra Sound View
13204582 0 3034 1728 +1306 Agnostic Gnosis View
13206898 3 3098 1793 +1305 BloXroute Max Profit View
13201419 4 3119 1814 +1305 Flashbots View
13206558 3 3097 1793 +1304 BloXroute Max Profit View
13205767 0 3032 1728 +1304 Aestus View
13206110 13 3310 2007 +1303 Ultra Sound View
13202924 7 3181 1878 +1303 BloXroute Max Profit View
13204568 7 3181 1878 +1303 Ultra Sound View
13205074 7 3180 1878 +1302 BloXroute Max Profit View
13203031 9 3222 1921 +1301 Ultra Sound View
13205763 8 3200 1900 +1300 Ultra Sound View
13203289 6 3157 1857 +1300 BloXroute Max Profit View
13203645 4 3114 1814 +1300 Ultra Sound View
13206776 3 3091 1793 +1298 Ultra Sound View
13207717 7 3173 1878 +1295 BloXroute Max Profit View
13203327 1 3044 1750 +1294 Ultra Sound View
13206243 9 3215 1921 +1294 BloXroute Max Profit View
13204432 1 3041 1750 +1291 Aestus View
13202961 9 3212 1921 +1291 Ultra Sound View
13207992 5 3124 1835 +1289 Agnostic Gnosis View
13201787 9 3209 1921 +1288 Flashbots View
13203321 4 3101 1814 +1287 Aestus View
13203199 6 3143 1857 +1286 Ultra Sound View
13204477 6 3142 1857 +1285 Ultra Sound View
13202355 7 3162 1878 +1284 BloXroute Max Profit View
13205073 2 3053 1771 +1282 Ultra Sound View
13204623 5 3116 1835 +1281 BloXroute Max Profit View
13203998 3 3073 1793 +1280 Titan Relay View
13208328 12 3266 1986 +1280 Ultra Sound View
13203817 9 3200 1921 +1279 BloXroute Max Profit View
13204590 3 3066 1793 +1273 Ultra Sound View
13203683 9 3194 1921 +1273 Ultra Sound View
13206594 4 3084 1814 +1270 BloXroute Max Profit View
13201460 3 3061 1793 +1268 BloXroute Regulated View
13202541 4 3082 1814 +1268 BloXroute Max Profit View
13201395 9 3189 1921 +1268 Ultra Sound View
13204743 9 3189 1921 +1268 BloXroute Max Profit View
13201935 3 3060 1793 +1267 BloXroute Regulated View
13204967 3 3058 1793 +1265 Aestus View
13202666 3 3057 1793 +1264 Ultra Sound View
13205840 4 3078 1814 +1264 BloXroute Max Profit View
13201719 7 3141 1878 +1263 BloXroute Regulated View
13207930 3 3054 1793 +1261 Titan Relay View
13203454 5 3096 1835 +1261 BloXroute Max Profit View
13203499 3 3052 1793 +1259 Ultra Sound View
13203125 4 3072 1814 +1258 BloXroute Regulated View
13205248 4 3071 1814 +1257 Agnostic Gnosis View
13203476 3 3046 1793 +1253 Aestus View
Total anomalies: 223

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})