Thu, Dec 11, 2025

Propagation anomalies - 2025-12-11

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-11' AND slot_start_date_time < '2025-12-11'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-11' AND slot_start_date_time < '2025-12-11'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-11' AND slot_start_date_time < '2025-12-11'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-11' AND slot_start_date_time < '2025-12-11'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-11' AND slot_start_date_time < '2025-12-11'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-11' AND slot_start_date_time < '2025-12-11'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-11' AND slot_start_date_time < '2025-12-11'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-11' AND slot_start_date_time < '2025-12-11'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,156
MEV blocks: 6,606 (92.3%)
Local blocks: 550 (7.7%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1715.7 + 24.35 × blob_count (R² = 0.018)
Residual σ = 605.9ms
Anomalies (>2σ slow): 231 (3.2%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13220925 0 7320 1716 +5604 Local View
13221978 0 6706 1716 +4990 Local View
13220219 4 6003 1813 +4190 Local View
13215973 0 5319 1716 +3603 Local View
13217036 0 4811 1716 +3095 Local View
13217280 0 4328 1716 +2612 Local View
13215877 0 4285 1716 +2569 Local View
13220864 0 4204 1716 +2488 Local View
13222464 0 3950 1716 +2234 Local View
13216448 0 3918 1716 +2202 Local View
13222432 0 3888 1716 +2172 Local View
13220744 0 3769 1716 +2053 Local View
13221891 6 3828 1862 +1966 BloXroute Regulated View
13218830 6 3792 1862 +1930 Agnostic Gnosis View
13217312 6 3773 1862 +1911 Local View
13222148 3 3661 1789 +1872 BloXroute Max Profit View
13217759 4 3677 1813 +1864 Titan Relay View
13220592 4 3653 1813 +1840 Local View
13216184 1 3554 1740 +1814 Titan Relay View
13217332 3 3592 1789 +1803 Titan Relay View
13215907 10 3750 1959 +1791 BloXroute Regulated View
13220109 4 3561 1813 +1748 Ultra Sound View
13218977 0 3462 1716 +1746 Local View
13215953 0 3439 1716 +1723 Local View
13222609 4 3530 1813 +1717 BloXroute Regulated View
13222345 0 3410 1716 +1694 Local View
13219304 0 3361 1716 +1645 BloXroute Regulated View
13219697 11 3611 1984 +1627 Titan Relay View
13221773 3 3405 1789 +1616 BloXroute Max Profit View
13218756 3 3404 1789 +1615 Agnostic Gnosis View
13218980 3 3384 1789 +1595 Titan Relay View
13219333 0 3286 1716 +1570 Titan Relay View
13222280 4 3382 1813 +1569 Ultra Sound View
13222248 3 3355 1789 +1566 BloXroute Regulated View
13218953 3 3351 1789 +1562 Titan Relay View
13222113 3 3347 1789 +1558 Local View
13218255 3 3337 1789 +1548 Ultra Sound View
13220047 0 3262 1716 +1546 Agnostic Gnosis View
13217899 9 3480 1935 +1545 Ultra Sound View
13217198 3 3324 1789 +1535 BloXroute Regulated View
13215936 4 3348 1813 +1535 Ultra Sound View
13218392 4 3347 1813 +1534 Ultra Sound View
13218615 3 3319 1789 +1530 BloXroute Regulated View
13217171 1 3260 1740 +1520 BloXroute Regulated View
13222720 7 3398 1886 +1512 Aestus View
13221877 3 3300 1789 +1511 Ultra Sound View
13219445 3 3298 1789 +1509 BloXroute Regulated View
13219004 3 3288 1789 +1499 Local View
13218316 3 3283 1789 +1494 BloXroute Regulated View
13222459 3 3279 1789 +1490 Titan Relay View
13216029 6 3342 1862 +1480 Titan Relay View
13218508 3 3268 1789 +1479 BloXroute Regulated View
13221088 3 3268 1789 +1479 Titan Relay View
13219360 6 3340 1862 +1478 Agnostic Gnosis View
13220751 14 3533 2057 +1476 Titan Relay View
13218540 3 3264 1789 +1475 BloXroute Regulated View
13218336 3 3263 1789 +1474 BloXroute Max Profit View
13218975 4 3286 1813 +1473 BloXroute Regulated View
13219680 5 3305 1837 +1468 Ultra Sound View
13218547 4 3275 1813 +1462 BloXroute Regulated View
13216319 1 3201 1740 +1461 Aestus View
13217388 3 3248 1789 +1459 Ultra Sound View
13216035 5 3295 1837 +1458 BloXroute Regulated View
13221668 5 3285 1837 +1448 BloXroute Regulated View
13218163 3 3236 1789 +1447 Ultra Sound View
13221678 4 3256 1813 +1443 Ultra Sound View
13217869 3 3231 1789 +1442 BloXroute Regulated View
13221534 10 3400 1959 +1441 Ultra Sound View
13222546 6 3299 1862 +1437 Ultra Sound View
13218184 6 3299 1862 +1437 Ultra Sound View
13217440 7 3323 1886 +1437 Ultra Sound View
13220608 6 3296 1862 +1434 Ultra Sound View
13221405 8 3344 1911 +1433 BloXroute Regulated View
13222725 5 3270 1837 +1433 BloXroute Regulated View
13221574 6 3294 1862 +1432 Ultra Sound View
13220033 1 3168 1740 +1428 BloXroute Max Profit View
13221109 3 3212 1789 +1423 Ultra Sound View
13216687 9 3352 1935 +1417 Titan Relay View
13219464 6 3277 1862 +1415 Ultra Sound View
13218911 6 3275 1862 +1413 BloXroute Regulated View
13221982 12 3417 2008 +1409 BloXroute Regulated View
13217945 10 3363 1959 +1404 Ultra Sound View
13221803 0 3116 1716 +1400 Aestus View
13219862 8 3305 1911 +1394 Ultra Sound View
13219819 3 3182 1789 +1393 BloXroute Regulated View
13218764 8 3301 1911 +1390 Titan Relay View
13220225 10 3343 1959 +1384 Ultra Sound View
13220384 0 3098 1716 +1382 BloXroute Max Profit View
13220448 9 3311 1935 +1376 Ultra Sound View
13220194 10 3335 1959 +1376 BloXroute Regulated View
13220624 6 3234 1862 +1372 Agnostic Gnosis View
13217763 11 3353 1984 +1369 BloXroute Max Profit View
13222705 0 3081 1716 +1365 Flashbots View
13215679 3 3152 1789 +1363 Ultra Sound View
13221059 11 3346 1984 +1362 BloXroute Max Profit View
13222135 6 3220 1862 +1358 Ultra Sound View
13220835 4 3170 1813 +1357 BloXroute Max Profit View
13220178 3 3139 1789 +1350 Agnostic Gnosis View
13216626 0 3062 1716 +1346 Ultra Sound View
13219904 3 3135 1789 +1346 Flashbots View
13216609 3 3134 1789 +1345 Aestus View
13221194 3 3134 1789 +1345 Agnostic Gnosis View
13216844 4 3158 1813 +1345 BloXroute Regulated View
13215946 4 3157 1813 +1344 BloXroute Regulated View
13215613 2 3108 1764 +1344 Agnostic Gnosis View
13217705 2 3107 1764 +1343 BloXroute Max Profit View
13222718 0 3058 1716 +1342 BloXroute Max Profit View
13217130 8 3252 1911 +1341 Flashbots View
13219462 3 3129 1789 +1340 Ultra Sound View
13221994 0 3055 1716 +1339 Ultra Sound View
13220308 7 3224 1886 +1338 Ultra Sound View
13215826 10 3296 1959 +1337 BloXroute Regulated View
13216260 4 3149 1813 +1336 BloXroute Regulated View
13216772 3 3123 1789 +1334 Local View
13222428 1 3067 1740 +1327 BloXroute Regulated View
13216134 4 3139 1813 +1326 Flashbots View
13221323 0 3040 1716 +1324 Aestus View
13216063 3 3112 1789 +1323 Aestus View
13218602 6 3183 1862 +1321 BloXroute Max Profit View
13221656 4 3133 1813 +1320 Ultra Sound View
13219070 3 3108 1789 +1319 Agnostic Gnosis View
13216976 3 3108 1789 +1319 Flashbots View
13216353 7 3205 1886 +1319 Ultra Sound View
13218200 7 3203 1886 +1317 BloXroute Max Profit View
13216897 7 3203 1886 +1317 Ultra Sound View
13221885 8 3223 1911 +1312 Ultra Sound View
13219702 3 3101 1789 +1312 BloXroute Max Profit View
13220378 4 3125 1813 +1312 Flashbots View
13216076 4 3124 1813 +1311 Titan Relay View
13220664 3 3098 1789 +1309 Aestus View
13222045 11 3292 1984 +1308 BloXroute Regulated View
13221752 3 3095 1789 +1306 Titan Relay View
13219636 6 3168 1862 +1306 BloXroute Max Profit View
13220213 4 3117 1813 +1304 Aestus View
13221307 13 3335 2032 +1303 Ultra Sound View
13219848 9 3237 1935 +1302 BloXroute Regulated View
13216152 3 3089 1789 +1300 BloXroute Max Profit View
13221835 9 3235 1935 +1300 BloXroute Max Profit View
13219797 12 3306 2008 +1298 Ultra Sound View
13220585 3 3086 1789 +1297 BloXroute Max Profit View
13219888 12 3301 2008 +1293 Ultra Sound View
13217342 4 3106 1813 +1293 Titan Relay View
13222700 1 3032 1740 +1292 BloXroute Regulated View
13219129 1 3031 1740 +1291 Flashbots View
13219421 3 3079 1789 +1290 BloXroute Max Profit View
13221642 3 3078 1789 +1289 Agnostic Gnosis View
13217555 3 3076 1789 +1287 BloXroute Max Profit View
13220613 7 3173 1886 +1287 BloXroute Max Profit View
13216082 3 3075 1789 +1286 Flashbots View
13221057 5 3123 1837 +1286 Aestus View
13220863 6 3146 1862 +1284 BloXroute Max Profit View
13221161 0 2999 1716 +1283 Titan Relay View
13218401 3 3072 1789 +1283 Aestus View
13220006 6 3144 1862 +1282 Ultra Sound View
13219063 3 3070 1789 +1281 Aestus View
13222057 0 2996 1716 +1280 Ultra Sound View
13222483 6 3142 1862 +1280 BloXroute Max Profit View
13218277 3 3068 1789 +1279 BloXroute Max Profit View
13217026 3 3067 1789 +1278 Flashbots View
13216372 9 3213 1935 +1278 BloXroute Max Profit View
13217437 3 3065 1789 +1276 Agnostic Gnosis View
13217845 3 3062 1789 +1273 Ultra Sound View
13217998 3 3061 1789 +1272 BloXroute Max Profit View
13220164 9 3207 1935 +1272 BloXroute Max Profit View
13219506 3 3060 1789 +1271 Titan Relay View
13217955 7 3157 1886 +1271 BloXroute Regulated View
13216701 3 3059 1789 +1270 Aestus View
13215949 9 3203 1935 +1268 BloXroute Max Profit View
13218947 6 3128 1862 +1266 BloXroute Max Profit View
13218770 0 2980 1716 +1264 Flashbots View
13218575 3 3053 1789 +1264 Ultra Sound View
13220053 8 3174 1911 +1263 BloXroute Max Profit View
13216108 3 3051 1789 +1262 BloXroute Max Profit View
13219979 6 3124 1862 +1262 BloXroute Regulated View
13221500 4 3074 1813 +1261 Ultra Sound View
13217834 9 3195 1935 +1260 BloXroute Max Profit View
13218219 5 3097 1837 +1260 BloXroute Max Profit View
13221199 3 3048 1789 +1259 Aestus View
13219306 9 3194 1935 +1259 BloXroute Max Profit View
13219420 8 3169 1911 +1258 Ultra Sound View
13220633 8 3169 1911 +1258 BloXroute Max Profit View
13219708 11 3241 1984 +1257 Ultra Sound View
13219375 6 3117 1862 +1255 Agnostic Gnosis View
13222669 3 3041 1789 +1252 Agnostic Gnosis View
13217602 5 3089 1837 +1252 Aestus View
13220517 4 3063 1813 +1250 Titan Relay View
13216910 6 3111 1862 +1249 Agnostic Gnosis View
13217362 1 2989 1740 +1249 Aestus View
13220273 10 3208 1959 +1249 BloXroute Max Profit View
13220776 3 3037 1789 +1248 BloXroute Regulated View
13215793 3 3037 1789 +1248 Aestus View
13215667 9 3183 1935 +1248 Flashbots View
13218373 13 3279 2032 +1247 Ultra Sound View
13220323 3 3035 1789 +1246 Aestus View
13218165 1 2986 1740 +1246 Ultra Sound View
13221152 9 3180 1935 +1245 Ultra Sound View
13219158 3 3032 1789 +1243 Titan Relay View
13215966 0 2958 1716 +1242 Titan Relay View
13221366 4 3055 1813 +1242 Agnostic Gnosis View
13220942 7 3128 1886 +1242 BloXroute Max Profit View
13217317 5 3079 1837 +1242 BloXroute Max Profit View
13217868 3 3030 1789 +1241 Ultra Sound View
13219567 3 3030 1789 +1241 Ultra Sound View
13216916 3 3027 1789 +1238 Aestus View
13218749 3 3027 1789 +1238 BloXroute Regulated View
13216078 6 3097 1862 +1235 Titan Relay View
13220956 7 3120 1886 +1234 Ultra Sound View
13216162 0 2948 1716 +1232 Ultra Sound View
13215722 5 3069 1837 +1232 BloXroute Max Profit View
13215968 6 3091 1862 +1229 BloXroute Max Profit View
13219055 1 2969 1740 +1229 Ultra Sound View
13215963 4 3042 1813 +1229 Titan Relay View
13218806 4 3041 1813 +1228 Aestus View
13217234 3 3016 1789 +1227 BloXroute Max Profit View
13217900 4 3040 1813 +1227 Titan Relay View
13218645 7 3111 1886 +1225 Flashbots View
13216251 6 3086 1862 +1224 Local View
13217283 4 3037 1813 +1224 Ultra Sound View
13219496 4 3037 1813 +1224 Agnostic Gnosis View
13215622 10 3181 1959 +1222 BloXroute Max Profit View
13220820 3 3010 1789 +1221 Aestus View
13219688 9 3155 1935 +1220 BloXroute Regulated View
13222468 9 3154 1935 +1219 BloXroute Max Profit View
13218002 3 3006 1789 +1217 Flashbots View
13218321 4 3030 1813 +1217 BloXroute Max Profit View
13217417 7 3103 1886 +1217 BloXroute Max Profit View
13222351 6 3078 1862 +1216 Agnostic Gnosis View
13216763 0 2930 1716 +1214 Agnostic Gnosis View
13221240 4 3027 1813 +1214 Titan Relay View
13222145 2 2977 1764 +1213 BloXroute Max Profit View
13218717 6 3074 1862 +1212 BloXroute Max Profit View
Total anomalies: 231

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})