Thu, Jan 8, 2026

Propagation anomalies - 2026-01-08

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-08' AND slot_start_date_time < '2026-01-08'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-08' AND slot_start_date_time < '2026-01-08'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-08' AND slot_start_date_time < '2026-01-08'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-08' AND slot_start_date_time < '2026-01-08'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-08' AND slot_start_date_time < '2026-01-08'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-08' AND slot_start_date_time < '2026-01-08'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-08' AND slot_start_date_time < '2026-01-08'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-08' AND slot_start_date_time < '2026-01-08'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,175
MEV blocks: 6,715 (93.6%)
Local blocks: 460 (6.4%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1784.8 + 17.85 × blob_count (R² = 0.013)
Residual σ = 639.9ms
Anomalies (>2σ slow): 221 (3.1%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13417628 0 8330 1785 +6545 Local View
13419631 0 8116 1785 +6331 Local View
13422079 11 7961 1981 +5980 Local View
13417765 0 6883 1785 +5098 Local View
13417852 0 6031 1785 +4246 Local View
13420186 0 5594 1785 +3809 Local View
13420149 0 5074 1785 +3289 Local View
13419280 0 4943 1785 +3158 Local View
13420557 0 4925 1785 +3140 Local View
13418593 0 4394 1785 +2609 Local View
13421036 0 4343 1785 +2558 Local View
13420328 0 4204 1785 +2419 Local View
13421376 0 4176 1785 +2391 Local View
13421632 0 4069 1785 +2284 Titan Relay View
13420550 0 3975 1785 +2190 Local View
13417806 0 3909 1785 +2124 Local View
13422691 2 3931 1820 +2111 Ultra Sound View
13419328 0 3867 1785 +2082 Ultra Sound View
13424259 0 3797 1785 +2012 Local View
13421874 6 3878 1892 +1986 Ultra Sound View
13420800 0 3734 1785 +1949 Local View
13420023 5 3821 1874 +1947 Local View
13418144 1 3691 1803 +1888 Local View
13422112 3 3711 1838 +1873 Titan Relay View
13422121 0 3620 1785 +1835 Ultra Sound View
13420480 6 3709 1892 +1817 Ultra Sound View
13418247 1 3609 1803 +1806 Ultra Sound View
13422037 1 3605 1803 +1802 BloXroute Regulated View
13418974 6 3686 1892 +1794 BloXroute Regulated View
13422020 5 3660 1874 +1786 Ultra Sound View
13419361 1 3578 1803 +1775 Ultra Sound View
13423844 1 3576 1803 +1773 BloXroute Regulated View
13418087 0 3557 1785 +1772 Ultra Sound View
13419446 5 3639 1874 +1765 Titan Relay View
13419424 6 3646 1892 +1754 Flashbots View
13421399 4 3583 1856 +1727 BloXroute Max Profit View
13421000 9 3665 1945 +1720 Ultra Sound View
13423063 6 3607 1892 +1715 Ultra Sound View
13420220 9 3635 1945 +1690 Ultra Sound View
13421152 2 3510 1820 +1690 BloXroute Regulated View
13421945 7 3592 1910 +1682 Ultra Sound View
13421238 9 3614 1945 +1669 Ultra Sound View
13421904 0 3445 1785 +1660 BloXroute Regulated View
13424112 10 3619 1963 +1656 Ultra Sound View
13422912 6 3523 1892 +1631 Titan Relay View
13422099 3 3469 1838 +1631 Local View
13418493 6 3518 1892 +1626 Ultra Sound View
13422504 3 3444 1838 +1606 Local View
13418558 0 3387 1785 +1602 Ultra Sound View
13419020 6 3494 1892 +1602 Titan Relay View
13418804 5 3464 1874 +1590 BloXroute Regulated View
13417876 10 3540 1963 +1577 Titan Relay View
13418746 6 3459 1892 +1567 Aestus View
13423767 3 3400 1838 +1562 BloXroute Regulated View
13420455 2 3371 1820 +1551 BloXroute Regulated View
13418166 2 3371 1820 +1551 BloXroute Regulated View
13421182 6 3442 1892 +1550 BloXroute Regulated View
13417954 4 3399 1856 +1543 BloXroute Regulated View
13419205 7 3451 1910 +1541 Titan Relay View
13423355 0 3322 1785 +1537 Ultra Sound View
13422316 12 3531 1999 +1532 BloXroute Regulated View
13423462 1 3326 1803 +1523 Titan Relay View
13422533 2 3341 1820 +1521 Titan Relay View
13418989 4 3367 1856 +1511 Ultra Sound View
13421829 10 3470 1963 +1507 Titan Relay View
13423812 1 3307 1803 +1504 Titan Relay View
13423459 1 3299 1803 +1496 BloXroute Regulated View
13417735 9 3440 1945 +1495 Ultra Sound View
13419845 1 3294 1803 +1491 Ultra Sound View
13420887 8 3418 1928 +1490 BloXroute Regulated View
13417624 1 3293 1803 +1490 BloXroute Regulated View
13421542 3 3326 1838 +1488 Ultra Sound View
13424081 1 3287 1803 +1484 BloXroute Regulated View
13417523 0 3269 1785 +1484 Titan Relay View
13420439 9 3428 1945 +1483 Ultra Sound View
13417361 4 3336 1856 +1480 Titan Relay View
13421799 7 3389 1910 +1479 Titan Relay View
13422238 2 3299 1820 +1479 Titan Relay View
13419435 8 3406 1928 +1478 BloXroute Regulated View
13418004 1 3281 1803 +1478 BloXroute Regulated View
13420951 6 3370 1892 +1478 BloXroute Max Profit View
13422144 9 3418 1945 +1473 Ultra Sound View
13417899 8 3398 1928 +1470 BloXroute Regulated View
13422455 8 3395 1928 +1467 Local View
13420102 6 3359 1892 +1467 Titan Relay View
13422009 11 3447 1981 +1466 EthGas View
13422036 4 3322 1856 +1466 BloXroute Regulated View
13422742 4 3321 1856 +1465 Ultra Sound View
13423800 4 3321 1856 +1465 BloXroute Regulated View
13421382 2 3283 1820 +1463 BloXroute Regulated View
13420405 7 3370 1910 +1460 BloXroute Max Profit View
13417543 1 3261 1803 +1458 Ultra Sound View
13419723 1 3259 1803 +1456 Local View
13417305 7 3360 1910 +1450 Titan Relay View
13418013 3 3284 1838 +1446 Titan Relay View
13421633 0 3227 1785 +1442 Ultra Sound View
13419324 0 3226 1785 +1441 BloXroute Regulated View
13423740 5 3314 1874 +1440 BloXroute Max Profit View
13422499 11 3419 1981 +1438 BloXroute Regulated View
13423231 5 3309 1874 +1435 Titan Relay View
13418311 10 3397 1963 +1434 Ultra Sound View
13420333 14 3468 2035 +1433 BloXroute Regulated View
13421288 12 3430 1999 +1431 BloXroute Regulated View
13424036 12 3428 1999 +1429 BloXroute Max Profit View
13417985 0 3208 1785 +1423 Ultra Sound View
13423609 11 3401 1981 +1420 BloXroute Regulated View
13422479 10 3379 1963 +1416 BloXroute Regulated View
13420668 0 3200 1785 +1415 Titan Relay View
13420734 6 3307 1892 +1415 Ultra Sound View
13418454 5 3287 1874 +1413 BloXroute Regulated View
13423677 9 3358 1945 +1413 Ultra Sound View
13423903 2 3231 1820 +1411 Ultra Sound View
13421636 0 3191 1785 +1406 BloXroute Max Profit View
13417231 5 3279 1874 +1405 BloXroute Regulated View
13419150 6 3295 1892 +1403 BloXroute Max Profit View
13422886 8 3330 1928 +1402 BloXroute Regulated View
13421964 10 3363 1963 +1400 Titan Relay View
13422412 6 3291 1892 +1399 BloXroute Regulated View
13423551 9 3344 1945 +1399 Ultra Sound View
13420798 0 3181 1785 +1396 Aestus View
13424057 10 3356 1963 +1393 Titan Relay View
13420368 9 3336 1945 +1391 Ultra Sound View
13418817 2 3209 1820 +1389 Flashbots View
13419142 1 3191 1803 +1388 Ultra Sound View
13418473 10 3349 1963 +1386 Ultra Sound View
13423133 12 3384 1999 +1385 Titan Relay View
13421877 9 3328 1945 +1383 BloXroute Regulated View
13419866 1 3183 1803 +1380 Flashbots View
13418293 1 3182 1803 +1379 BloXroute Regulated View
13422460 1 3181 1803 +1378 Aestus View
13421099 11 3359 1981 +1378 BloXroute Max Profit View
13423546 14 3408 2035 +1373 Titan Relay View
13424381 9 3318 1945 +1373 Titan Relay View
13418723 9 3317 1945 +1372 Titan Relay View
13418262 9 3317 1945 +1372 Ultra Sound View
13418232 1 3173 1803 +1370 Ultra Sound View
13421535 0 3152 1785 +1367 Ultra Sound View
13423698 4 3223 1856 +1367 Ultra Sound View
13421518 1 3169 1803 +1366 BloXroute Regulated View
13421563 0 3150 1785 +1365 BloXroute Regulated View
13422345 1 3167 1803 +1364 Ultra Sound View
13420676 4 3220 1856 +1364 BloXroute Regulated View
13422122 8 3289 1928 +1361 Titan Relay View
13419868 4 3217 1856 +1361 Aestus View
13420782 1 3159 1803 +1356 Aestus View
13419288 12 3354 1999 +1355 BloXroute Max Profit View
13422080 9 3297 1945 +1352 Ultra Sound View
13423672 7 3258 1910 +1348 Ultra Sound View
13422736 6 3238 1892 +1346 Ultra Sound View
13420707 11 3327 1981 +1346 BloXroute Max Profit View
13423661 7 3255 1910 +1345 Ultra Sound View
13418737 4 3200 1856 +1344 BloXroute Max Profit View
13424386 4 3200 1856 +1344 BloXroute Regulated View
13422720 0 3127 1785 +1342 Agnostic Gnosis View
13419685 1 3144 1803 +1341 Aestus View
13420791 0 3126 1785 +1341 Ultra Sound View
13423227 11 3321 1981 +1340 Titan Relay View
13422753 7 3249 1910 +1339 BloXroute Max Profit View
13422034 6 3231 1892 +1339 Flashbots View
13423053 9 3283 1945 +1338 Ultra Sound View
13420825 2 3157 1820 +1337 Agnostic Gnosis View
13420831 2 3156 1820 +1336 BloXroute Max Profit View
13419313 5 3209 1874 +1335 Ultra Sound View
13420068 1 3137 1803 +1334 Ultra Sound View
13421202 2 3153 1820 +1333 Ultra Sound View
13422944 0 3116 1785 +1331 BloXroute Max Profit View
13417845 12 3329 1999 +1330 Ultra Sound View
13422498 1 3129 1803 +1326 Titan Relay View
13418464 6 3217 1892 +1325 Ultra Sound View
13422980 6 3216 1892 +1324 BloXroute Max Profit View
13418109 4 3180 1856 +1324 BloXroute Max Profit View
13420157 1 3126 1803 +1323 Titan Relay View
13420889 9 3266 1945 +1321 Ultra Sound View
13423323 7 3228 1910 +1318 BloXroute Max Profit View
13419995 6 3209 1892 +1317 BloXroute Regulated View
13422439 4 3173 1856 +1317 Aestus View
13422495 2 3137 1820 +1317 BloXroute Max Profit View
13418159 6 3207 1892 +1315 BloXroute Regulated View
13420870 6 3206 1892 +1314 BloXroute Max Profit View
13420880 1 3115 1803 +1312 Aestus View
13423016 1 3115 1803 +1312 Titan Relay View
13422931 7 3221 1910 +1311 Agnostic Gnosis View
13421379 2 3131 1820 +1311 Ultra Sound View
13421298 1 3112 1803 +1309 Ultra Sound View
13420438 6 3201 1892 +1309 BloXroute Max Profit View
13423064 1 3111 1803 +1308 BloXroute Regulated View
13417913 5 3182 1874 +1308 BloXroute Max Profit View
13422687 5 3181 1874 +1307 Aestus View
13424220 9 3252 1945 +1307 Ultra Sound View
13417656 14 3341 2035 +1306 BloXroute Max Profit View
13417573 1 3108 1803 +1305 BloXroute Regulated View
13419486 4 3161 1856 +1305 BloXroute Regulated View
13423224 6 3196 1892 +1304 Ultra Sound View
13423010 6 3196 1892 +1304 BloXroute Regulated View
13421168 8 3231 1928 +1303 BloXroute Max Profit View
13418428 1 3106 1803 +1303 BloXroute Max Profit View
13417649 0 3088 1785 +1303 Agnostic Gnosis View
13417898 1 3104 1803 +1301 Titan Relay View
13423284 6 3192 1892 +1300 BloXroute Max Profit View
13424319 2 3119 1820 +1299 BloXroute Max Profit View
13421347 1 3099 1803 +1296 BloXroute Max Profit View
13422797 6 3188 1892 +1296 Aestus View
13424374 7 3203 1910 +1293 Ultra Sound View
13424230 2 3113 1820 +1293 Flashbots View
13423951 11 3273 1981 +1292 Ultra Sound View
13418136 7 3201 1910 +1291 BloXroute Max Profit View
13423354 9 3236 1945 +1291 Flashbots View
13418383 1 3093 1803 +1290 Ultra Sound View
13419410 12 3289 1999 +1290 Ultra Sound View
13419271 8 3216 1928 +1288 BloXroute Max Profit View
13418158 1 3091 1803 +1288 Ultra Sound View
13417372 11 3269 1981 +1288 BloXroute Max Profit View
13422197 0 3072 1785 +1287 Titan Relay View
13418640 1 3087 1803 +1284 BloXroute Regulated View
13419489 7 3194 1910 +1284 BloXroute Max Profit View
13419906 4 3140 1856 +1284 BloXroute Max Profit View
13423353 2 3104 1820 +1284 Ultra Sound View
13420838 0 3068 1785 +1283 Ultra Sound View
13422559 1 3085 1803 +1282 Ultra Sound View
13420235 1 3084 1803 +1281 Titan Relay View
13422745 7 3190 1910 +1280 BloXroute Max Profit View
Total anomalies: 221

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})