Fri, Jan 30, 2026

Propagation anomalies - 2026-01-30

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-30' AND slot_start_date_time < '2026-01-30'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-30' AND slot_start_date_time < '2026-01-30'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-30' AND slot_start_date_time < '2026-01-30'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-30' AND slot_start_date_time < '2026-01-30'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-30' AND slot_start_date_time < '2026-01-30'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-30' AND slot_start_date_time < '2026-01-30'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-30' AND slot_start_date_time < '2026-01-30'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-30' AND slot_start_date_time < '2026-01-30'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,184
MEV blocks: 6,694 (93.2%)
Local blocks: 490 (6.8%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1816.4 + 17.43 × blob_count (R² = 0.016)
Residual σ = 634.5ms
Anomalies (>2σ slow): 247 (3.4%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13581568 0 6832 1816 +5016 whale_0x1153 Local Local
13577744 0 6781 1816 +4965 abyss_finance Local Local
13579843 0 5848 1816 +4032 senseinode_lido Local Local
13580768 0 5220 1816 +3404 upbit Local Local
13576224 3 4396 1869 +2527 senseinode_lido 0x9589cf28... Flashbots
13576761 0 4194 1816 +2378 binance Local Local
13581183 17 4469 2113 +2356 staked.us 0x88a53ec4... BloXroute Regulated
13576670 0 4051 1816 +2235 Local Local
13576157 0 4045 1816 +2229 figment Local Local
13581524 0 4033 1816 +2217 Local Local
13580405 0 3970 1816 +2154 stakingfacilities_lido Local Local
13581645 0 3966 1816 +2150 everstake Local Local
13577025 4 3934 1886 +2048 lido Local Local
13581566 0 3856 1816 +2040 lido Local Local
13580308 5 3924 1904 +2020 coinbase 0x856b0004... Aestus
13578455 3 3865 1869 +1996 whale_0xd07d 0x88857150... Ultra Sound
13578180 0 3773 1816 +1957 everstake 0x852b0070... BloXroute Max Profit
13578162 5 3813 1904 +1909 blockdaemon_lido 0xb67eaa5e... Titan Relay
13576348 9 3867 1973 +1894 piertwo Local Local
13577700 5 3762 1904 +1858 everstake 0xb67eaa5e... BloXroute Max Profit
13581957 6 3762 1921 +1841 0xb26f9666... Titan Relay
13579193 16 3915 2095 +1820 gateway.fmas_lido 0x88a53ec4... BloXroute Regulated
13581768 0 3620 1816 +1804 blockdaemon 0x853b0078... Ultra Sound
13579981 0 3596 1816 +1780 0x850b00e0... BloXroute Regulated
13579376 3 3640 1869 +1771 coinbase 0x853b0078... Aestus
13578880 0 3583 1816 +1767 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13579956 0 3578 1816 +1762 blockdaemon 0x8c4ed5e2... Titan Relay
13576867 4 3647 1886 +1761 0x8527d16c... Ultra Sound
13578335 0 3574 1816 +1758 ether.fi 0x88a53ec4... BloXroute Max Profit
13578202 1 3591 1834 +1757 0x88510a78... BloXroute Regulated
13578541 4 3639 1886 +1753 0x88857150... Ultra Sound
13576945 6 3669 1921 +1748 0x853b0078... Ultra Sound
13575814 4 3633 1886 +1747 blockdaemon 0xb26f9666... Titan Relay
13578442 3 3615 1869 +1746 everstake 0x8527d16c... Ultra Sound
13581437 5 3643 1904 +1739 blockdaemon 0xb26f9666... BloXroute Regulated
13576385 13 3773 2043 +1730 revolut 0xb67eaa5e... Titan Relay
13580644 8 3667 1956 +1711 0xb26f9666... Titan Relay
13579948 5 3612 1904 +1708 blockdaemon 0x853b0078... Ultra Sound
13580504 7 3644 1938 +1706 blockdaemon 0xb26f9666... Titan Relay
13579863 13 3742 2043 +1699 everstake 0xb67eaa5e... BloXroute Regulated
13578590 6 3616 1921 +1695 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13581717 9 3666 1973 +1693 0xb26f9666... Titan Relay
13581591 7 3628 1938 +1690 blockdaemon 0x88510a78... BloXroute Regulated
13578316 0 3505 1816 +1689 revolut 0x8527d16c... Ultra Sound
13580684 8 3636 1956 +1680 figment 0x88a53ec4... BloXroute Regulated
13581164 10 3664 1991 +1673 blockdaemon 0x853b0078... Ultra Sound
13578927 7 3610 1938 +1672 revolut 0x850b00e0... BloXroute Regulated
13582330 10 3657 1991 +1666 0x88510a78... BloXroute Regulated
13579283 0 3467 1816 +1651 0x91a8729e... Aestus
13581751 9 3621 1973 +1648 ether.fi 0x856b0004... BloXroute Max Profit
13581269 10 3637 1991 +1646 ether.fi 0xb67eaa5e... EthGas
13579980 10 3635 1991 +1644 0xb26f9666... Titan Relay
13581231 9 3612 1973 +1639 lido 0x850b00e0... BloXroute Max Profit
13579004 9 3597 1973 +1624 0x8c4ed5e2... Titan Relay
13580884 0 3418 1816 +1602 blockdaemon 0xb211df49... Ultra Sound
13578453 3 3468 1869 +1599 everstake 0xb26f9666... Titan Relay
13579776 3 3457 1869 +1588 ether.fi 0xb26f9666... Titan Relay
13579774 5 3490 1904 +1586 figment 0xb67eaa5e... BloXroute Regulated
13579766 1 3410 1834 +1576 everstake 0x855b00e6... BloXroute Max Profit
13577083 0 3385 1816 +1569 0x823e0146... BloXroute Max Profit
13580757 11 3571 2008 +1563 0x855b00e6... Ultra Sound
13579038 0 3378 1816 +1562 luno 0xb26f9666... Titan Relay
13576601 4 3446 1886 +1560 0xb26f9666... EthGas
13582217 3 3420 1869 +1551 luno 0xb26f9666... Titan Relay
13582435 6 3472 1921 +1551 ether.fi 0xb26f9666... Titan Relay
13580960 0 3359 1816 +1543 stakefish 0x8db2a99d... BloXroute Max Profit
13580870 9 3508 1973 +1535 blockdaemon_lido 0xb67eaa5e... Titan Relay
13578948 6 3455 1921 +1534 bitstamp 0x88a53ec4... BloXroute Regulated
13576741 5 3435 1904 +1531 ether.fi 0x88a53ec4... BloXroute Max Profit
13581545 0 3347 1816 +1531 everstake 0x8db2a99d... BloXroute Max Profit
13577608 0 3346 1816 +1530 everstake 0xa10f2964... Flashbots
13580961 11 3534 2008 +1526 everstake 0x88a53ec4... BloXroute Max Profit
13578966 2 3375 1851 +1524 blockdaemon 0x8c4ed5e2... Titan Relay
13580499 7 3459 1938 +1521 everstake 0xb26f9666... Titan Relay
13581833 1 3352 1834 +1518 blockdaemon 0x88857150... Ultra Sound
13582797 1 3351 1834 +1517 everstake 0x8527d16c... Ultra Sound
13581515 3 3383 1869 +1514 everstake 0xb67eaa5e... BloXroute Max Profit
13582483 4 3398 1886 +1512 everstake 0x853b0078... BloXroute Max Profit
13578514 6 3422 1921 +1501 everstake 0xb26f9666... Titan Relay
13581334 9 3474 1973 +1501 everstake 0xb67eaa5e... BloXroute Max Profit
13576022 4 3384 1886 +1498 everstake 0xb67eaa5e... BloXroute Max Profit
13580568 6 3414 1921 +1493 mantle 0xb26f9666... Titan Relay
13579072 10 3478 1991 +1487 p2porg 0x850b00e0... BloXroute Max Profit
13578241 0 3303 1816 +1487 blockdaemon 0xb26f9666... Titan Relay
13578288 0 3302 1816 +1486 blockdaemon 0x853b0078... Ultra Sound
13582758 0 3299 1816 +1483 whale_0xdd6c 0x88857150... Ultra Sound
13578654 5 3386 1904 +1482 luno 0x853b0078... Ultra Sound
13578191 4 3368 1886 +1482 0x853b0078... Aestus
13581626 10 3470 1991 +1479 blockdaemon_lido 0x8527d16c... Ultra Sound
13576538 5 3374 1904 +1470 blockdaemon 0x856b0004... Ultra Sound
13578208 8 3423 1956 +1467 everstake 0xb26f9666... Titan Relay
13580110 2 3318 1851 +1467 everstake 0xb26f9666... Titan Relay
13581919 1 3300 1834 +1466 everstake 0x823e0146... Flashbots
13578494 8 3420 1956 +1464 blockdaemon_lido 0x8527d16c... Ultra Sound
13580984 0 3279 1816 +1463 blockdaemon 0x926b7905... BloXroute Regulated
13576727 8 3418 1956 +1462 0xb67eaa5e... BloXroute Regulated
13575969 16 3557 2095 +1462 0x856b0004... BloXroute Max Profit
13579429 6 3382 1921 +1461 blockdaemon 0x88857150... Ultra Sound
13579533 0 3274 1816 +1458 0x83bee517... BloXroute Max Profit
13578369 0 3274 1816 +1458 luno 0x88a53ec4... BloXroute Regulated
13581641 3 3324 1869 +1455 blockdaemon_lido 0xb26f9666... BloXroute Regulated
13581255 0 3271 1816 +1455 blockdaemon_lido 0xb67eaa5e... BloXroute Max Profit
13577526 3 3323 1869 +1454 blockdaemon_lido 0x88a53ec4... BloXroute Max Profit
13580704 17 3566 2113 +1453 0x8527d16c... Ultra Sound
13577580 0 3266 1816 +1450 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13578108 0 3265 1816 +1449 luno 0x88a53ec4... BloXroute Regulated
13576164 9 3420 1973 +1447 everstake 0xb67eaa5e... BloXroute Regulated
13577868 3 3313 1869 +1444 0xb26f9666... BloXroute Regulated
13582752 8 3400 1956 +1444 everstake 0xb26f9666... Titan Relay
13579112 5 3345 1904 +1441 blockdaemon_lido 0xb26f9666... Titan Relay
13576557 4 3327 1886 +1441 everstake 0x8db2a99d... BloXroute Max Profit
13578136 5 3343 1904 +1439 everstake 0x88857150... Ultra Sound
13578044 8 3395 1956 +1439 blockdaemon 0xb67eaa5e... BloXroute Regulated
13582348 11 3445 2008 +1437 0xb26f9666... BloXroute Regulated
13577317 3 3305 1869 +1436 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13579798 8 3390 1956 +1434 everstake 0x853b0078... BloXroute Max Profit
13580314 7 3372 1938 +1434 0xb26f9666... Titan Relay
13575911 0 3247 1816 +1431 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13576933 8 3384 1956 +1428 blockdaemon 0x850b00e0... BloXroute Regulated
13575903 3 3296 1869 +1427 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13581887 5 3328 1904 +1424 whale_0x4685 0xb67eaa5e... BloXroute Regulated
13581859 0 3239 1816 +1423 0x8a850621... Ultra Sound
13579697 0 3239 1816 +1423 everstake 0x852b0070... Agnostic Gnosis
13579777 5 3326 1904 +1422 whale_0x7b0e Local Local
13578693 6 3341 1921 +1420 0x850b00e0... BloXroute Regulated
13579827 6 3339 1921 +1418 blockdaemon_lido 0x8527d16c... Ultra Sound
13579811 8 3372 1956 +1416 blockdaemon 0x850b00e0... BloXroute Regulated
13578313 2 3266 1851 +1415 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13580872 1 3248 1834 +1414 0x88857150... Ultra Sound
13579215 7 3352 1938 +1414 blockdaemon_lido 0xb26f9666... Titan Relay
13576665 17 3526 2113 +1413 blockdaemon 0xb4ce6162... Ultra Sound
13580518 4 3298 1886 +1412 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13578584 6 3332 1921 +1411 0xb67eaa5e... BloXroute Max Profit
13581521 4 3297 1886 +1411 everstake 0x853b0078... Ultra Sound
13577448 0 3226 1816 +1410 0x88857150... Ultra Sound
13577201 0 3222 1816 +1406 revolut 0x8527d16c... Ultra Sound
13582325 10 3394 1991 +1403 blockdaemon_lido 0x8527d16c... Ultra Sound
13578360 1 3237 1834 +1403 0x853b0078... Ultra Sound
13580981 5 3306 1904 +1402 0x8db2a99d... Flashbots
13581612 5 3303 1904 +1399 everstake 0x8527d16c... Ultra Sound
13580022 5 3302 1904 +1398 piertwo Local Local
13576925 7 3332 1938 +1394 everstake 0xb26f9666... Titan Relay
13581053 17 3505 2113 +1392 p2porg 0x850b00e0... BloXroute Max Profit
13580450 8 3345 1956 +1389 0x850b00e0... BloXroute Regulated
13578246 4 3275 1886 +1389 revolut 0x850b00e0... BloXroute Regulated
13576151 0 3202 1816 +1386 everstake 0x852b0070... Aestus
13578216 4 3270 1886 +1384 revolut 0x88510a78... BloXroute Regulated
13578888 5 3287 1904 +1383 0x8527d16c... Ultra Sound
13576276 0 3198 1816 +1382 0xb211df49... Aestus
13579364 3 3247 1869 +1378 coinbase 0x853b0078... Aestus
13577834 5 3281 1904 +1377 everstake 0xb67eaa5e... BloXroute Regulated
13575610 0 3193 1816 +1377 coinbase 0x852b0070... Aestus
13581762 10 3364 1991 +1373 blockdaemon_lido 0xb26f9666... Titan Relay
13577052 0 3188 1816 +1372 0x91a8729e... BloXroute Max Profit
13581310 6 3292 1921 +1371 ether.fi 0x850b00e0... Flashbots
13582502 0 3183 1816 +1367 solo_stakers Local Local
13581247 10 3356 1991 +1365 0xb67eaa5e... BloXroute Max Profit
13580606 7 3303 1938 +1365 0x88510a78... BloXroute Regulated
13579324 8 3320 1956 +1364 everstake 0xb26f9666... Titan Relay
13580216 8 3320 1956 +1364 blockdaemon_lido 0x88857150... Ultra Sound
13581450 10 3350 1991 +1359 0x88a53ec4... BloXroute Max Profit
13577026 12 3381 2026 +1355 p2porg 0x88a53ec4... BloXroute Max Profit
13577553 0 3171 1816 +1355 0x852b0070... Agnostic Gnosis
13578248 1 3187 1834 +1353 everstake 0xb67eaa5e... BloXroute Max Profit
13579602 5 3256 1904 +1352 0xb26f9666... Titan Relay
13581421 8 3307 1956 +1351 ether.fi 0x88a53ec4... BloXroute Max Profit
13582347 1 3179 1834 +1345 0x853b0078... Titan Relay
13581571 3 3213 1869 +1344 0xb26f9666... Titan Relay
13581462 3 3212 1869 +1343 0x88a53ec4... BloXroute Max Profit
13579588 8 3299 1956 +1343 p2porg 0x850b00e0... BloXroute Max Profit
13578730 5 3244 1904 +1340 blockdaemon 0x8c4ed5e2... Titan Relay
13576467 3 3206 1869 +1337 everstake 0xb26f9666... Titan Relay
13581119 0 3153 1816 +1337 0x83bee517... Flashbots
13580219 11 3344 2008 +1336 everstake 0x850b00e0... BloXroute Max Profit
13582314 8 3289 1956 +1333 ether.fi 0x88a53ec4... BloXroute Max Profit
13580185 10 3323 1991 +1332 0xb67eaa5e... BloXroute Max Profit
13576952 9 3301 1973 +1328 gateway.fmas_lido 0x88a53ec4... BloXroute Regulated
13581812 16 3423 2095 +1328 p2porg 0x88a53ec4... BloXroute Max Profit
13581620 5 3230 1904 +1326 p2porg 0x88a53ec4... BloXroute Max Profit
13580108 6 3246 1921 +1325 0x88a53ec4... BloXroute Max Profit
13577784 0 3141 1816 +1325 everstake 0x856b0004... Aestus
13581390 5 3227 1904 +1323 stakingfacilities_lido 0x853b0078... Aestus
13578989 7 3261 1938 +1323 bitstamp 0x88a53ec4... BloXroute Max Profit
13575647 8 3278 1956 +1322 p2porg 0x8c4ed5e2... Titan Relay
13575871 0 3137 1816 +1321 p2porg 0x852b0070... Aestus
13582439 10 3311 1991 +1320 0xb67eaa5e... BloXroute Regulated
13578579 3 3188 1869 +1319 ether.fi 0xb67eaa5e... BloXroute Max Profit
13582516 4 3205 1886 +1319 everstake 0x853b0078... BloXroute Max Profit
13579478 5 3222 1904 +1318 0x91b123d8... Flashbots
13578134 5 3218 1904 +1314 0x823e0146... Flashbots
13581510 6 3235 1921 +1314 0x8527d16c... Ultra Sound
13577836 10 3304 1991 +1313 figment 0x853b0078... Aestus
13575804 8 3268 1956 +1312 0x88a53ec4... BloXroute Regulated
13576432 0 3128 1816 +1312 blockdaemon_lido 0x8527d16c... Ultra Sound
13579768 0 3128 1816 +1312 whale_0x9f1d 0x852b0070... Aestus
13578143 7 3250 1938 +1312 0x850b00e0... BloXroute Regulated
13577103 1 3145 1834 +1311 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13579262 6 3231 1921 +1310 0x850b00e0... Flashbots
13577933 8 3265 1956 +1309 everstake 0xb26f9666... Titan Relay
13581793 8 3265 1956 +1309 stakingfacilities_lido 0x88a53ec4... BloXroute Max Profit
13582722 4 3195 1886 +1309 0x850b00e0... BloXroute Regulated
13579976 3 3176 1869 +1307 stakingfacilities_lido 0x88857150... Ultra Sound
13581312 1 3141 1834 +1307 ether.fi Local Local
13575652 0 3123 1816 +1307 abyss_finance 0x82c466b9... Flashbots
13580033 2 3157 1851 +1306 p2porg 0xb26f9666... BloXroute Max Profit
13577944 3 3174 1869 +1305 bitstamp 0xb67eaa5e... BloXroute Max Profit
13582622 8 3261 1956 +1305 blockdaemon 0xb26f9666... Titan Relay
13579835 0 3120 1816 +1304 0x88a53ec4... BloXroute Max Profit
13580746 6 3224 1921 +1303 0xb67eaa5e... BloXroute Regulated
13580796 3 3171 1869 +1302 p2porg 0x850b00e0... BloXroute Regulated
13579905 6 3223 1921 +1302 everstake 0x8c4ed5e2... Titan Relay
13578252 7 3240 1938 +1302 everstake 0x8db2a99d... Flashbots
13582357 0 3117 1816 +1301 0x856b0004... BloXroute Max Profit
13576038 8 3255 1956 +1299 p2porg 0x8c4ed5e2... Titan Relay
13578865 5 3202 1904 +1298 0x88a53ec4... BloXroute Max Profit
13581191 0 3111 1816 +1295 p2porg 0x88a53ec4... BloXroute Max Profit
13575668 3 3162 1869 +1293 0x8527d16c... Ultra Sound
13576782 10 3284 1991 +1293 everstake 0xb26f9666... Titan Relay
13577736 8 3249 1956 +1293 gateway.fmas_lido 0x853b0078... BloXroute Max Profit
13578512 8 3249 1956 +1293 0x855b00e6... Ultra Sound
13576465 11 3301 2008 +1293 p2porg 0x8db2a99d... Flashbots
13577840 11 3300 2008 +1292 0xb26f9666... BloXroute Regulated
13580116 12 3317 2026 +1291 blockdaemon_lido 0x8527d16c... Ultra Sound
13581473 3 3160 1869 +1291 0x88a53ec4... BloXroute Max Profit
13579093 6 3212 1921 +1291 p2porg 0x850b00e0... BloXroute Regulated
13575701 11 3299 2008 +1291 0xb26f9666... Titan Relay
13578057 8 3246 1956 +1290 everstake 0x8db2a99d... Flashbots
13578242 8 3246 1956 +1290 stakingfacilities_lido 0x850b00e0... BloXroute Regulated
13576435 9 3259 1973 +1286 0x88a53ec4... BloXroute Max Profit
13579795 0 3102 1816 +1286 0x88a53ec4... BloXroute Regulated
13577092 12 3311 2026 +1285 ether.fi 0x8527d16c... Ultra Sound
13577525 6 3206 1921 +1285 0x853b0078... Ultra Sound
13578548 6 3206 1921 +1285 0xb26f9666... Titan Relay
13579867 6 3206 1921 +1285 bitstamp 0xb67eaa5e... BloXroute Regulated
13576698 3 3153 1869 +1284 0x88a53ec4... BloXroute Regulated
13580571 8 3239 1956 +1283 everstake 0xb26f9666... Titan Relay
13580327 4 3168 1886 +1282 p2porg 0xb26f9666... BloXroute Max Profit
13582258 10 3272 1991 +1281 0x850b00e0... BloXroute Max Profit
13579020 3 3147 1869 +1278 0x850b00e0... BloXroute Regulated
13581168 0 3092 1816 +1276 0x82c466b9... BloXroute Regulated
13577635 20 3438 2165 +1273 p2porg 0x856b0004... Aestus
13582531 8 3228 1956 +1272 0x8527d16c... Ultra Sound
13576703 0 3088 1816 +1272 p2porg 0xb67eaa5e... BloXroute Max Profit
13575919 7 3209 1938 +1271 p2porg 0x853b0078... Aestus
13579814 3 3139 1869 +1270 0xac23f8cc... BloXroute Max Profit
13575687 1 3104 1834 +1270 p2porg 0x88a53ec4... BloXroute Regulated
13581696 1 3103 1834 +1269 nethermind_lido 0xb26f9666... Titan Relay
Total anomalies: 247

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})