Sat, Dec 6, 2025

Propagation anomalies - 2025-12-06

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-06' AND slot_start_date_time < '2025-12-06'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-06' AND slot_start_date_time < '2025-12-06'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-06' AND slot_start_date_time < '2025-12-06'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-06' AND slot_start_date_time < '2025-12-06'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-06' AND slot_start_date_time < '2025-12-06'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-06' AND slot_start_date_time < '2025-12-06'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-06' AND slot_start_date_time < '2025-12-06'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-06' AND slot_start_date_time < '2025-12-06'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,131
MEV blocks: 6,469 (90.7%)
Local blocks: 662 (9.3%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1705.0 + 18.83 × blob_count (R² = 0.007)
Residual σ = 608.8ms
Anomalies (>2σ slow): 234 (3.3%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13182946 0 9079 1705 +7374 Local View
13182211 0 7129 1705 +5424 Local View
13186081 6 6970 1818 +5152 Local View
13185093 7 5952 1837 +4115 EthGas View
13184013 0 5626 1705 +3921 Local View
13182021 8 5732 1856 +3876 Local View
13180390 0 5462 1705 +3757 Local View
13180704 0 5231 1705 +3526 Local View
13185955 0 5055 1705 +3350 Local View
13181906 0 3977 1705 +2272 Local View
13182016 0 3912 1705 +2207 Local View
13181323 0 3823 1705 +2118 Local View
13185972 0 3528 1705 +1823 Local View
13184352 3 3584 1761 +1823 Local View
13185064 3 3534 1761 +1773 Ultra Sound View
13185120 0 3471 1705 +1766 Aestus View
13183586 0 3455 1705 +1750 Local View
13184078 8 3539 1856 +1683 Ultra Sound View
13182689 6 3493 1818 +1675 Titan Relay View
13185056 8 3529 1856 +1673 Ultra Sound View
13180043 3 3428 1761 +1667 Titan Relay View
13179980 3 3403 1761 +1642 Ultra Sound View
13184098 4 3403 1780 +1623 Flashbots View
13182523 2 3355 1743 +1612 Ultra Sound View
13186160 3 3369 1761 +1608 Ultra Sound View
13179610 4 3385 1780 +1605 Ultra Sound View
13182624 3 3362 1761 +1601 Ultra Sound View
13182890 6 3418 1818 +1600 Ultra Sound View
13183409 0 3288 1705 +1583 Local View
13185265 4 3360 1780 +1580 Ultra Sound View
13184356 3 3337 1761 +1576 Ultra Sound View
13181985 7 3411 1837 +1574 BloXroute Max Profit View
13186475 1 3296 1724 +1572 BloXroute Regulated View
13180695 4 3352 1780 +1572 Flashbots View
13185672 0 3276 1705 +1571 BloXroute Regulated View
13180828 3 3330 1761 +1569 Titan Relay View
13185372 4 3320 1780 +1540 BloXroute Regulated View
13186778 6 3355 1818 +1537 Titan Relay View
13183657 4 3314 1780 +1534 BloXroute Regulated View
13181720 6 3351 1818 +1533 Ultra Sound View
13186016 5 3327 1799 +1528 Ultra Sound View
13181630 8 3372 1856 +1516 BloXroute Regulated View
13184508 8 3370 1856 +1514 Titan Relay View
13186012 8 3368 1856 +1512 Ultra Sound View
13185502 6 3328 1818 +1510 Ultra Sound View
13181382 6 3320 1818 +1502 Titan Relay View
13180810 5 3294 1799 +1495 BloXroute Max Profit View
13185161 7 3330 1837 +1493 BloXroute Regulated View
13183722 4 3272 1780 +1492 BloXroute Regulated View
13182753 9 3366 1874 +1492 BloXroute Max Profit View
13185174 8 3346 1856 +1490 BloXroute Regulated View
13180029 8 3343 1856 +1487 BloXroute Regulated View
13183040 3 3247 1761 +1486 Ultra Sound View
13179741 8 3341 1856 +1485 Ultra Sound View
13181567 4 3264 1780 +1484 Ultra Sound View
13182270 4 3263 1780 +1483 BloXroute Regulated View
13181536 3 3241 1761 +1480 Local View
13180268 3 3240 1761 +1479 Titan Relay View
13180423 0 3180 1705 +1475 Titan Relay View
13186635 9 3349 1874 +1475 Ultra Sound View
13181991 4 3254 1780 +1474 BloXroute Regulated View
13181409 5 3271 1799 +1472 BloXroute Regulated View
13183313 3 3224 1761 +1463 Ultra Sound View
13183928 6 3276 1818 +1458 Aestus View
13185086 6 3276 1818 +1458 Titan Relay View
13180257 9 3331 1874 +1457 Local View
13186423 9 3330 1874 +1456 Ultra Sound View
13184662 4 3230 1780 +1450 Aestus View
13180123 7 3282 1837 +1445 BloXroute Regulated View
13186768 6 3262 1818 +1444 Ultra Sound View
13183248 6 3256 1818 +1438 Ultra Sound View
13180100 0 3138 1705 +1433 Flashbots View
13186774 3 3194 1761 +1433 Flashbots View
13184171 9 3296 1874 +1422 Ultra Sound View
13179764 4 3197 1780 +1417 Titan Relay View
13180609 9 3291 1874 +1417 BloXroute Regulated View
13186435 3 3176 1761 +1415 Ultra Sound View
13185063 9 3288 1874 +1414 BloXroute Regulated View
13179799 8 3269 1856 +1413 Titan Relay View
13183441 7 3250 1837 +1413 Aestus View
13186169 0 3117 1705 +1412 Flashbots View
13180753 4 3191 1780 +1411 Ultra Sound View
13182070 4 3189 1780 +1409 BloXroute Max Profit View
13183876 0 3113 1705 +1408 Ultra Sound View
13183379 6 3223 1818 +1405 Flashbots View
13182955 9 3279 1874 +1405 Aestus View
13179763 9 3275 1874 +1401 Ultra Sound View
13179735 5 3198 1799 +1399 Flashbots View
13184149 9 3270 1874 +1396 BloXroute Regulated View
13185149 3 3155 1761 +1394 BloXroute Regulated View
13185122 6 3206 1818 +1388 BloXroute Max Profit View
13184037 0 3085 1705 +1380 Agnostic Gnosis View
13185312 4 3160 1780 +1380 BloXroute Max Profit View
13186235 4 3159 1780 +1379 BloXroute Regulated View
13186515 0 3082 1705 +1377 Agnostic Gnosis View
13181300 9 3251 1874 +1377 Titan Relay View
13181347 3 3138 1761 +1377 Flashbots View
13183410 3 3137 1761 +1376 Flashbots View
13183219 6 3193 1818 +1375 BloXroute Max Profit View
13182134 9 3248 1874 +1374 BloXroute Max Profit View
13182728 8 3229 1856 +1373 Ultra Sound View
13179683 3 3134 1761 +1373 BloXroute Max Profit View
13182620 6 3187 1818 +1369 BloXroute Max Profit View
13184963 3 3129 1761 +1368 Aestus View
13180141 9 3240 1874 +1366 BloXroute Regulated View
13183930 3 3127 1761 +1366 Aestus View
13180362 9 3237 1874 +1363 Ultra Sound View
13180546 3 3124 1761 +1363 BloXroute Regulated View
13183526 0 3067 1705 +1362 Ultra Sound View
13181675 6 3179 1818 +1361 Aestus View
13183787 4 3140 1780 +1360 Ultra Sound View
13183343 6 3176 1818 +1358 Aestus View
13186416 4 3138 1780 +1358 Ultra Sound View
13181761 6 3175 1818 +1357 Ultra Sound View
13186732 4 3134 1780 +1354 Ultra Sound View
13184587 9 3228 1874 +1354 Ultra Sound View
13184326 1 3075 1724 +1351 Ultra Sound View
13180076 0 3056 1705 +1351 Agnostic Gnosis View
13184354 6 3168 1818 +1350 Ultra Sound View
13181762 8 3205 1856 +1349 Ultra Sound View
13180217 3 3109 1761 +1348 Agnostic Gnosis View
13180176 1 3071 1724 +1347 Ultra Sound View
13180238 6 3165 1818 +1347 Ultra Sound View
13180931 1 3069 1724 +1345 Agnostic Gnosis View
13183566 0 3045 1705 +1340 Ultra Sound View
13180363 4 3120 1780 +1340 Agnostic Gnosis View
13185308 6 3156 1818 +1338 Agnostic Gnosis View
13182715 3 3099 1761 +1338 Ultra Sound View
13180623 3 3098 1761 +1337 Aestus View
13184118 3 3097 1761 +1336 BloXroute Max Profit View
13186499 3 3097 1761 +1336 Titan Relay View
13186317 4 3114 1780 +1334 Aestus View
13184755 4 3111 1780 +1331 Ultra Sound View
13182653 6 3148 1818 +1330 BloXroute Max Profit View
13186305 4 3109 1780 +1329 Ultra Sound View
13183937 3 3090 1761 +1329 Titan Relay View
13181678 4 3107 1780 +1327 Ultra Sound View
13184198 9 3200 1874 +1326 BloXroute Max Profit View
13180706 7 3161 1837 +1324 BloXroute Max Profit View
13184111 5 3123 1799 +1324 Agnostic Gnosis View
13185201 0 3027 1705 +1322 Local View
13184324 7 3158 1837 +1321 Ultra Sound View
13185322 4 3101 1780 +1321 Flashbots View
13181292 5 3119 1799 +1320 Ultra Sound View
13183499 9 3194 1874 +1320 Ultra Sound View
13180722 3 3081 1761 +1320 Ultra Sound View
13180607 3 3081 1761 +1320 Ultra Sound View
13184205 7 3156 1837 +1319 BloXroute Max Profit View
13182460 4 3099 1780 +1319 Ultra Sound View
13182227 0 3023 1705 +1318 Ultra Sound View
13182563 9 3192 1874 +1318 Ultra Sound View
13185653 3 3079 1761 +1318 Ultra Sound View
13181313 4 3097 1780 +1317 Ultra Sound View
13182634 9 3191 1874 +1317 Ultra Sound View
13181394 3 3077 1761 +1316 BloXroute Max Profit View
13181712 6 3133 1818 +1315 Agnostic Gnosis View
13185249 5 3112 1799 +1313 BloXroute Max Profit View
13184883 4 3093 1780 +1313 Flashbots View
13184865 4 3092 1780 +1312 BloXroute Max Profit View
13186738 3 3073 1761 +1312 Ultra Sound View
13180795 7 3148 1837 +1311 Ultra Sound View
13186444 1 3035 1724 +1311 Ultra Sound View
13186516 6 3129 1818 +1311 Ultra Sound View
13182900 3 3070 1761 +1309 Titan Relay View
13182750 3 3069 1761 +1308 Agnostic Gnosis View
13183203 6 3125 1818 +1307 BloXroute Regulated View
13179892 6 3124 1818 +1306 BloXroute Max Profit View
13184950 4 3085 1780 +1305 Ultra Sound View
13186657 9 3179 1874 +1305 Ultra Sound View
13183140 9 3178 1874 +1304 BloXroute Regulated View
13184773 6 3121 1818 +1303 Ultra Sound View
13184120 9 3177 1874 +1303 Ultra Sound View
13180175 9 3176 1874 +1302 Ultra Sound View
13182513 7 3137 1837 +1300 BloXroute Max Profit View
13181960 3 3061 1761 +1300 BloXroute Max Profit View
13183555 6 3117 1818 +1299 Aestus View
13181924 3 3060 1761 +1299 Ultra Sound View
13184929 4 3078 1780 +1298 Aestus View
13183875 0 3001 1705 +1296 Ultra Sound View
13181741 4 3074 1780 +1294 Ultra Sound View
13183458 9 3167 1874 +1293 Ultra Sound View
13184783 3 3052 1761 +1291 Ultra Sound View
13182674 3 3051 1761 +1290 Aestus View
13181629 7 3126 1837 +1289 BloXroute Max Profit View
13180493 3 3049 1761 +1288 Agnostic Gnosis View
13182643 7 3123 1837 +1286 Ultra Sound View
13183329 3 3047 1761 +1286 Agnostic Gnosis View
13184858 8 3140 1856 +1284 Ultra Sound View
13186378 3 3045 1761 +1284 Ultra Sound View
13181362 6 3099 1818 +1281 Ultra Sound View
13181559 2 3023 1743 +1280 Ultra Sound View
13184227 6 3097 1818 +1279 Aestus View
13182755 0 2984 1705 +1279 Titan Relay View
13183746 5 3077 1799 +1278 BloXroute Max Profit View
13185950 3 3039 1761 +1278 BloXroute Max Profit View
13181370 3 3037 1761 +1276 BloXroute Max Profit View
13179678 5 3074 1799 +1275 Ultra Sound View
13179605 9 3149 1874 +1275 Ultra Sound View
13185522 3 3033 1761 +1272 BloXroute Max Profit View
13186110 3 3032 1761 +1271 Titan Relay View
13180112 8 3120 1856 +1264 Ultra Sound View
13184501 6 3080 1818 +1262 Ultra Sound View
13182958 4 3042 1780 +1262 Agnostic Gnosis View
13185106 4 3039 1780 +1259 Flashbots View
13181441 3 3020 1761 +1259 Ultra Sound View
13185311 3 3020 1761 +1259 Ultra Sound View
13184310 6 3075 1818 +1257 Ultra Sound View
13180135 3 3017 1761 +1256 Ultra Sound View
13182467 4 3035 1780 +1255 Aestus View
13184986 6 3071 1818 +1253 BloXroute Max Profit View
13182992 4 3033 1780 +1253 Ultra Sound View
13183492 7 3089 1837 +1252 Ultra Sound View
13181578 7 3089 1837 +1252 BloXroute Max Profit View
13181918 9 3126 1874 +1252 Ultra Sound View
13181112 7 3087 1837 +1250 Aestus View
13180465 4 3029 1780 +1249 Agnostic Gnosis View
13185523 6 3064 1818 +1246 BloXroute Regulated View
13186238 5 3045 1799 +1246 Ultra Sound View
13181954 5 3044 1799 +1245 Ultra Sound View
13186472 7 3081 1837 +1244 BloXroute Regulated View
13180103 6 3061 1818 +1243 Agnostic Gnosis View
13180971 8 3095 1856 +1239 BloXroute Regulated View
13182673 7 3076 1837 +1239 Ultra Sound View
13183139 3 3000 1761 +1239 Ultra Sound View
13180567 6 3054 1818 +1236 Titan Relay View
13185756 4 3016 1780 +1236 BloXroute Max Profit View
13179781 3 2996 1761 +1235 BloXroute Max Profit View
13184881 3 2996 1761 +1235 Agnostic Gnosis View
13181693 6 3051 1818 +1233 Aestus View
13183475 7 3068 1837 +1231 Ultra Sound View
13180392 7 3065 1837 +1228 Ultra Sound View
13179927 6 3043 1818 +1225 Ultra Sound View
13186541 6 3040 1818 +1222 Ultra Sound View
13183678 6 3036 1818 +1218 Ultra Sound View
Total anomalies: 234

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})