Sun, Dec 7, 2025

Propagation anomalies - 2025-12-07

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-07' AND slot_start_date_time < '2025-12-07'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-07' AND slot_start_date_time < '2025-12-07'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-07' AND slot_start_date_time < '2025-12-07'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-07' AND slot_start_date_time < '2025-12-07'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-07' AND slot_start_date_time < '2025-12-07'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-07' AND slot_start_date_time < '2025-12-07'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-07' AND slot_start_date_time < '2025-12-07'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-07' AND slot_start_date_time < '2025-12-07'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,148
MEV blocks: 6,437 (90.1%)
Local blocks: 711 (9.9%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1698.3 + 17.65 × blob_count (R² = 0.007)
Residual σ = 600.4ms
Anomalies (>2σ slow): 249 (3.5%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13190138 0 7824 1698 +6126 Local View
13190624 4 7175 1769 +5406 Local View
13193402 0 5971 1698 +4273 Local View
13188605 0 4625 1698 +2927 Local View
13189120 7 4665 1822 +2843 Local View
13192673 0 4388 1698 +2690 Local View
13192245 0 3996 1698 +2298 Local View
13193633 0 3878 1698 +2180 Local View
13188999 0 3826 1698 +2128 Flashbots View
13193466 0 3792 1698 +2094 Local View
13191712 3 3743 1751 +1992 Ultra Sound View
13191545 7 3796 1822 +1974 Aestus View
13187680 6 3775 1804 +1971 Local View
13190328 9 3596 1857 +1739 Titan Relay View
13192049 0 3419 1698 +1721 Ultra Sound View
13191766 9 3530 1857 +1673 Titan Relay View
13192224 0 3357 1698 +1659 Agnostic Gnosis View
13191748 6 3453 1804 +1649 Ultra Sound View
13191689 3 3398 1751 +1647 Ultra Sound View
13186955 3 3378 1751 +1627 Ultra Sound View
13187201 9 3463 1857 +1606 Local View
13192679 3 3348 1751 +1597 Titan Relay View
13193492 1 3303 1716 +1587 BloXroute Regulated View
13187296 6 3389 1804 +1585 BloXroute Max Profit View
13187578 2 3318 1734 +1584 Ultra Sound View
13186956 7 3406 1822 +1584 Ultra Sound View
13188631 3 3317 1751 +1566 BloXroute Regulated View
13187527 3 3302 1751 +1551 Local View
13189128 9 3402 1857 +1545 Titan Relay View
13191948 3 3291 1751 +1540 BloXroute Regulated View
13193429 9 3396 1857 +1539 Local View
13188894 0 3232 1698 +1534 Agnostic Gnosis View
13187141 1 3238 1716 +1522 Titan Relay View
13190334 6 3319 1804 +1515 Agnostic Gnosis View
13188348 4 3281 1769 +1512 Titan Relay View
13189746 4 3280 1769 +1511 BloXroute Regulated View
13187346 5 3297 1787 +1510 BloXroute Regulated View
13187619 0 3207 1698 +1509 Local View
13190321 2 3242 1734 +1508 Ultra Sound View
13193305 3 3257 1751 +1506 Ultra Sound View
13188163 4 3272 1769 +1503 BloXroute Regulated View
13193681 9 3360 1857 +1503 BloXroute Max Profit View
13191250 9 3359 1857 +1502 Ultra Sound View
13186957 7 3315 1822 +1493 Ultra Sound View
13188291 3 3244 1751 +1493 Titan Relay View
13192981 7 3312 1822 +1490 Titan Relay View
13187026 4 3259 1769 +1490 Aestus View
13187600 9 3332 1857 +1475 BloXroute Regulated View
13192877 4 3243 1769 +1474 BloXroute Regulated View
13189631 9 3331 1857 +1474 BloXroute Regulated View
13191131 0 3171 1698 +1473 BloXroute Max Profit View
13187904 3 3223 1751 +1472 Local View
13191677 9 3328 1857 +1471 BloXroute Regulated View
13193679 9 3327 1857 +1470 Local View
13191988 9 3324 1857 +1467 BloXroute Regulated View
13193950 1 3176 1716 +1460 Flashbots View
13189633 4 3227 1769 +1458 BloXroute Regulated View
13193888 3 3208 1751 +1457 Titan Relay View
13190069 7 3278 1822 +1456 BloXroute Max Profit View
13193927 4 3221 1769 +1452 Ultra Sound View
13192186 0 3148 1698 +1450 Aestus View
13191141 9 3304 1857 +1447 Ultra Sound View
13187693 3 3195 1751 +1444 Titan Relay View
13191203 9 3298 1857 +1441 Ultra Sound View
13191108 9 3297 1857 +1440 BloXroute Regulated View
13187412 6 3241 1804 +1437 BloXroute Regulated View
13190502 6 3232 1804 +1428 BloXroute Regulated View
13189071 7 3249 1822 +1427 BloXroute Regulated View
13191575 0 3125 1698 +1427 BloXroute Max Profit View
13187496 6 3226 1804 +1422 Ultra Sound View
13193786 6 3222 1804 +1418 Ultra Sound View
13190176 4 3186 1769 +1417 BloXroute Max Profit View
13190370 3 3168 1751 +1417 Ultra Sound View
13191024 9 3273 1857 +1416 BloXroute Regulated View
13192376 8 3250 1840 +1410 Agnostic Gnosis View
13189270 8 3249 1840 +1409 Ultra Sound View
13191389 6 3210 1804 +1406 Aestus View
13189882 8 3241 1840 +1401 Ultra Sound View
13187387 8 3241 1840 +1401 BloXroute Regulated View
13191917 9 3258 1857 +1401 Ultra Sound View
13188943 3 3151 1751 +1400 BloXroute Max Profit View
13191553 3 3149 1751 +1398 Ultra Sound View
13188925 6 3201 1804 +1397 Titan Relay View
13190564 3 3148 1751 +1397 Aestus View
13190816 9 3253 1857 +1396 Ultra Sound View
13193024 6 3198 1804 +1394 BloXroute Max Profit View
13192333 9 3250 1857 +1393 Aestus View
13192958 9 3247 1857 +1390 BloXroute Regulated View
13193255 6 3194 1804 +1390 Flashbots View
13191023 3 3141 1751 +1390 Ultra Sound View
13192133 0 3088 1698 +1390 Agnostic Gnosis View
13192296 7 3211 1822 +1389 Aestus View
13191232 6 3193 1804 +1389 Ultra Sound View
13193892 2 3120 1734 +1386 Ultra Sound View
13190388 6 3189 1804 +1385 BloXroute Regulated View
13192583 3 3136 1751 +1385 Aestus View
13191370 0 3082 1698 +1384 Agnostic Gnosis View
13189425 5 3169 1787 +1382 Titan Relay View
13192466 3 3131 1751 +1380 BloXroute Max Profit View
13191713 3 3127 1751 +1376 Ultra Sound View
13191672 4 3144 1769 +1375 BloXroute Regulated View
13193667 9 3232 1857 +1375 Agnostic Gnosis View
13190981 6 3179 1804 +1375 Agnostic Gnosis View
13188852 3 3125 1751 +1374 BloXroute Regulated View
13189033 5 3156 1787 +1369 Agnostic Gnosis View
13187325 0 3063 1698 +1365 Ultra Sound View
13193123 1 3080 1716 +1364 Agnostic Gnosis View
13193325 3 3114 1751 +1363 Titan Relay View
13191959 0 3060 1698 +1362 Local View
13193316 0 3058 1698 +1360 Agnostic Gnosis View
13187567 6 3161 1804 +1357 BloXroute Regulated View
13192473 4 3125 1769 +1356 BloXroute Max Profit View
13187944 9 3213 1857 +1356 BloXroute Max Profit View
13190880 4 3124 1769 +1355 Ultra Sound View
13191127 0 3053 1698 +1355 Ultra Sound View
13190392 4 3123 1769 +1354 Aestus View
13191914 8 3193 1840 +1353 Ultra Sound View
13186845 9 3208 1857 +1351 BloXroute Regulated View
13187584 0 3048 1698 +1350 Agnostic Gnosis View
13189964 0 3046 1698 +1348 Ultra Sound View
13189347 5 3134 1787 +1347 BloXroute Regulated View
13192528 3 3097 1751 +1346 BloXroute Regulated View
13192240 6 3149 1804 +1345 Ultra Sound View
13189594 6 3149 1804 +1345 Ultra Sound View
13187196 7 3164 1822 +1342 Ultra Sound View
13189141 6 3146 1804 +1342 Ultra Sound View
13186809 3 3093 1751 +1342 BloXroute Max Profit View
13190055 4 3110 1769 +1341 Agnostic Gnosis View
13193134 6 3145 1804 +1341 Agnostic Gnosis View
13191019 7 3162 1822 +1340 Ultra Sound View
13193303 1 3054 1716 +1338 Flashbots View
13188690 1 3053 1716 +1337 Ultra Sound View
13187840 4 3105 1769 +1336 BloXroute Regulated View
13191664 7 3157 1822 +1335 Ultra Sound View
13189694 3 3086 1751 +1335 Ultra Sound View
13193510 0 3032 1698 +1334 BloXroute Max Profit View
13189791 4 3101 1769 +1332 BloXroute Max Profit View
13190458 7 3153 1822 +1331 Titan Relay View
13192705 3 3082 1751 +1331 Ultra Sound View
13187435 3 3081 1751 +1330 Ultra Sound View
13189299 7 3150 1822 +1328 Ultra Sound View
13187579 3 3077 1751 +1326 Aestus View
13187280 3 3077 1751 +1326 BloXroute Max Profit View
13193299 5 3110 1787 +1323 Ultra Sound View
13190089 6 3126 1804 +1322 Ultra Sound View
13188068 5 3108 1787 +1321 Agnostic Gnosis View
13187771 2 3055 1734 +1321 BloXroute Max Profit View
13189404 9 3178 1857 +1321 BloXroute Max Profit View
13193160 0 3018 1698 +1320 BloXroute Regulated View
13189485 0 3018 1698 +1320 Ultra Sound View
13187834 8 3159 1840 +1319 Ultra Sound View
13189982 3 3069 1751 +1318 Ultra Sound View
13187408 0 3016 1698 +1318 Ultra Sound View
13193522 0 3013 1698 +1315 BloXroute Max Profit View
13190125 3 3065 1751 +1314 BloXroute Max Profit View
13190382 4 3081 1769 +1312 Ultra Sound View
13189904 6 3116 1804 +1312 Agnostic Gnosis View
13189774 3 3063 1751 +1312 Ultra Sound View
13188088 5 3098 1787 +1311 Aestus View
13191999 9 3168 1857 +1311 Aestus View
13188917 4 3079 1769 +1310 Ultra Sound View
13188186 9 3166 1857 +1309 Aestus View
13187219 6 3110 1804 +1306 BloXroute Max Profit View
13189643 6 3109 1804 +1305 Ultra Sound View
13188152 4 3073 1769 +1304 Aestus View
13190994 3 3054 1751 +1303 Agnostic Gnosis View
13189603 9 3156 1857 +1299 Ultra Sound View
13193179 0 2997 1698 +1299 Ultra Sound View
13193599 8 3137 1840 +1297 BloXroute Regulated View
13192552 8 3137 1840 +1297 BloXroute Regulated View
13190757 7 3119 1822 +1297 Ultra Sound View
13191454 9 3154 1857 +1297 Ultra Sound View
13188156 4 3065 1769 +1296 BloXroute Max Profit View
13191105 3 3046 1751 +1295 BloXroute Regulated View
13192401 6 3098 1804 +1294 Ultra Sound View
13192189 3 3043 1751 +1292 Agnostic Gnosis View
13192024 9 3147 1857 +1290 Ultra Sound View
13192250 5 3075 1787 +1288 BloXroute Max Profit View
13193304 8 3123 1840 +1283 Ultra Sound View
13192756 1 2999 1716 +1283 Ultra Sound View
13192162 9 3140 1857 +1283 Ultra Sound View
13192790 6 3086 1804 +1282 Ultra Sound View
13193606 8 3121 1840 +1281 Agnostic Gnosis View
13189162 6 3084 1804 +1280 Agnostic Gnosis View
13188421 6 3083 1804 +1279 BloXroute Max Profit View
13193087 0 2977 1698 +1279 Ultra Sound View
13187297 3 3029 1751 +1278 Ultra Sound View
13192917 5 3064 1787 +1277 BloXroute Regulated View
13187764 6 3080 1804 +1276 Ultra Sound View
13192227 9 3130 1857 +1273 Aestus View
13189435 9 3129 1857 +1272 Ultra Sound View
13187900 3 3020 1751 +1269 BloXroute Max Profit View
13191230 5 3054 1787 +1267 Ultra Sound View
13193852 4 3036 1769 +1267 Aestus View
13191594 9 3123 1857 +1266 Agnostic Gnosis View
13193070 9 3122 1857 +1265 Ultra Sound View
13191021 9 3121 1857 +1264 BloXroute Regulated View
13189359 6 3067 1804 +1263 Ultra Sound View
13191525 4 3031 1769 +1262 BloXroute Max Profit View
13191621 8 3101 1840 +1261 BloXroute Max Profit View
13187839 9 3118 1857 +1261 BloXroute Max Profit View
13191970 4 3029 1769 +1260 Agnostic Gnosis View
13191540 8 3098 1840 +1258 Ultra Sound View
13189187 1 2972 1716 +1256 Ultra Sound View
13193005 5 3041 1787 +1254 Ultra Sound View
13187191 3 3005 1751 +1254 Ultra Sound View
13190751 4 3022 1769 +1253 Ultra Sound View
13191809 6 3057 1804 +1253 Ultra Sound View
13189360 6 3057 1804 +1253 Titan Relay View
13191875 5 3039 1787 +1252 Ultra Sound View
13190461 3 3003 1751 +1252 Agnostic Gnosis View
13188986 8 3090 1840 +1250 BloXroute Max Profit View
13191923 6 3054 1804 +1250 Ultra Sound View
13192349 6 3052 1804 +1248 Aestus View
13186919 6 3051 1804 +1247 Agnostic Gnosis View
13191962 6 3051 1804 +1247 Ultra Sound View
13193991 8 3084 1840 +1244 Flashbots View
13192597 6 3044 1804 +1240 Ultra Sound View
13191398 3 2988 1751 +1237 BloXroute Max Profit View
13193132 5 3023 1787 +1236 Ultra Sound View
13191477 7 3058 1822 +1236 Ultra Sound View
13189999 8 3075 1840 +1235 Ultra Sound View
13187172 6 3039 1804 +1235 Flashbots View
13193844 4 3003 1769 +1234 Ultra Sound View
13192889 9 3090 1857 +1233 BloXroute Max Profit View
13187411 3 2982 1751 +1231 EthGas View
13193400 6 3034 1804 +1230 Ultra Sound View
13193395 6 3033 1804 +1229 Ultra Sound View
13191821 6 3029 1804 +1225 Flashbots View
13188265 9 3079 1857 +1222 BloXroute Max Profit View
13189092 6 3025 1804 +1221 Ultra Sound View
13187488 3 2970 1751 +1219 Ultra Sound View
13187695 6 3021 1804 +1217 BloXroute Max Profit View
13190711 6 3021 1804 +1217 Ultra Sound View
13190527 6 3020 1804 +1216 Ultra Sound View
13188775 3 2966 1751 +1215 Flashbots View
13193962 6 3016 1804 +1212 Ultra Sound View
13189361 0 2909 1698 +1211 Ultra Sound View
13187314 7 3032 1822 +1210 Aestus View
13192340 4 2977 1769 +1208 Ultra Sound View
13186810 9 3064 1857 +1207 Agnostic Gnosis View
13187158 6 3011 1804 +1207 Titan Relay View
13188250 8 3046 1840 +1206 Agnostic Gnosis View
13193464 9 3063 1857 +1206 Titan Relay View
13190891 6 3010 1804 +1206 Ultra Sound View
13189657 8 3044 1840 +1204 Ultra Sound View
13187050 7 3026 1822 +1204 Ultra Sound View
13189090 9 3061 1857 +1204 Ultra Sound View
13189902 9 3061 1857 +1204 BloXroute Max Profit View
Total anomalies: 249

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})