Sat, Dec 13, 2025

Propagation anomalies - 2025-12-13

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-13' AND slot_start_date_time < '2025-12-13'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-13' AND slot_start_date_time < '2025-12-13'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-13' AND slot_start_date_time < '2025-12-13'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-13' AND slot_start_date_time < '2025-12-13'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-13' AND slot_start_date_time < '2025-12-13'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-13' AND slot_start_date_time < '2025-12-13'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-13' AND slot_start_date_time < '2025-12-13'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-13' AND slot_start_date_time < '2025-12-13'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,163
MEV blocks: 6,609 (92.3%)
Local blocks: 554 (7.7%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1699.9 + 25.96 × blob_count (R² = 0.016)
Residual σ = 621.8ms
Anomalies (>2σ slow): 212 (3.0%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13232098 0 15102 1700 +13402 Local View
13232482 0 7030 1700 +5330 Local View
13235029 0 5419 1700 +3719 Local View
13234134 0 4695 1700 +2995 Local View
13234073 0 4521 1700 +2821 Local View
13232778 12 4815 2011 +2804 Local View
13233472 0 4048 1700 +2348 Local View
13236772 0 4040 1700 +2340 Local View
13231987 0 4020 1700 +2320 Local View
13232623 0 3942 1700 +2242 Local View
13235271 0 3693 1700 +1993 Flashbots View
13236874 9 3825 1933 +1892 Local View
13233754 6 3708 1856 +1852 Titan Relay View
13234051 4 3649 1804 +1845 Flashbots View
13236433 3 3618 1778 +1840 Ultra Sound View
13234803 1 3504 1726 +1778 Ultra Sound View
13232155 6 3617 1856 +1761 Titan Relay View
13234090 5 3591 1830 +1761 Titan Relay View
13232966 2 3513 1752 +1761 Ultra Sound View
13236614 4 3554 1804 +1750 Ultra Sound View
13236716 0 3439 1700 +1739 Ultra Sound View
13231962 5 3560 1830 +1730 Titan Relay View
13231096 5 3553 1830 +1723 Ultra Sound View
13232989 3 3495 1778 +1717 Ultra Sound View
13232801 10 3646 1959 +1687 BloXroute Regulated View
13235230 7 3568 1882 +1686 Titan Relay View
13230268 6 3530 1856 +1674 BloXroute Regulated View
13230717 7 3546 1882 +1664 Ultra Sound View
13231939 6 3511 1856 +1655 Ultra Sound View
13230312 9 3585 1933 +1652 Ultra Sound View
13231457 3 3412 1778 +1634 Ultra Sound View
13234912 7 3514 1882 +1632 BloXroute Regulated View
13231037 5 3452 1830 +1622 Ultra Sound View
13235388 8 3524 1908 +1616 Ultra Sound View
13236417 2 3360 1752 +1608 BloXroute Regulated View
13235473 0 3296 1700 +1596 BloXroute Regulated View
13234176 3 3372 1778 +1594 Agnostic Gnosis View
13233376 4 3392 1804 +1588 Ultra Sound View
13232910 4 3386 1804 +1582 Ultra Sound View
13230114 5 3393 1830 +1563 BloXroute Regulated View
13231904 3 3337 1778 +1559 Flashbots View
13236081 3 3335 1778 +1557 Ultra Sound View
13235453 4 3342 1804 +1538 BloXroute Regulated View
13231956 1 3264 1726 +1538 BloXroute Regulated View
13235755 1 3259 1726 +1533 BloXroute Regulated View
13232342 4 3333 1804 +1529 Ultra Sound View
13235758 3 3298 1778 +1520 Titan Relay View
13231695 1 3246 1726 +1520 Titan Relay View
13235531 3 3296 1778 +1518 Ultra Sound View
13234821 4 3321 1804 +1517 Titan Relay View
13236976 6 3367 1856 +1511 BloXroute Regulated View
13230810 4 3312 1804 +1508 Ultra Sound View
13236441 9 3439 1933 +1506 BloXroute Regulated View
13234965 6 3353 1856 +1497 Ultra Sound View
13230534 6 3351 1856 +1495 Titan Relay View
13236039 10 3447 1959 +1488 Ultra Sound View
13234918 3 3248 1778 +1470 BloXroute Regulated View
13230046 6 3320 1856 +1464 BloXroute Regulated View
13234089 3 3240 1778 +1462 BloXroute Regulated View
13236006 2 3214 1752 +1462 BloXroute Regulated View
13234870 3 3236 1778 +1458 BloXroute Regulated View
13230980 0 3158 1700 +1458 Aestus View
13231626 0 3157 1700 +1457 Titan Relay View
13230584 5 3282 1830 +1452 Ultra Sound View
13235390 8 3355 1908 +1447 BloXroute Regulated View
13233306 6 3302 1856 +1446 Ultra Sound View
13230308 3 3220 1778 +1442 Flashbots View
13236960 3 3220 1778 +1442 Flashbots View
13234004 5 3270 1830 +1440 Ultra Sound View
13234868 3 3213 1778 +1435 BloXroute Regulated View
13233025 3 3211 1778 +1433 Ultra Sound View
13236744 6 3284 1856 +1428 BloXroute Regulated View
13236313 6 3280 1856 +1424 Ultra Sound View
13234088 9 3357 1933 +1424 BloXroute Regulated View
13231232 3 3198 1778 +1420 BloXroute Max Profit View
13234201 0 3117 1700 +1417 Aestus View
13230463 0 3109 1700 +1409 Aestus View
13230124 8 3310 1908 +1402 BloXroute Regulated View
13233775 9 3333 1933 +1400 Ultra Sound View
13232850 5 3229 1830 +1399 BloXroute Regulated View
13235177 3 3177 1778 +1399 Titan Relay View
13232981 4 3197 1804 +1393 Flashbots View
13231505 3 3170 1778 +1392 Flashbots View
13234317 3 3169 1778 +1391 Agnostic Gnosis View
13234351 4 3193 1804 +1389 BloXroute Max Profit View
13234311 12 3400 2011 +1389 BloXroute Regulated View
13234361 4 3190 1804 +1386 Aestus View
13232594 0 3086 1700 +1386 BloXroute Max Profit View
13233404 0 3086 1700 +1386 Agnostic Gnosis View
13232203 6 3241 1856 +1385 BloXroute Regulated View
13231599 4 3189 1804 +1385 Ultra Sound View
13232287 5 3212 1830 +1382 BloXroute Max Profit View
13234191 9 3310 1933 +1377 Ultra Sound View
13232632 7 3254 1882 +1372 Ultra Sound View
13231762 4 3174 1804 +1370 BloXroute Regulated View
13231405 1 3094 1726 +1368 Titan Relay View
13231723 0 3068 1700 +1368 Aestus View
13231220 9 3300 1933 +1367 BloXroute Regulated View
13230464 6 3220 1856 +1364 Ultra Sound View
13233849 7 3245 1882 +1363 BloXroute Regulated View
13234252 4 3167 1804 +1363 BloXroute Regulated View
13234500 11 3346 1985 +1361 BloXroute Regulated View
13234466 4 3164 1804 +1360 Ultra Sound View
13234269 0 3060 1700 +1360 Aestus View
13230199 9 3289 1933 +1356 Ultra Sound View
13235564 0 3052 1700 +1352 Aestus View
13235985 1 3077 1726 +1351 Aestus View
13230536 8 3256 1908 +1348 Titan Relay View
13232026 7 3229 1882 +1347 Titan Relay View
13233915 4 3151 1804 +1347 Titan Relay View
13231796 4 3149 1804 +1345 Ultra Sound View
13230078 3 3118 1778 +1340 Ultra Sound View
13234020 4 3141 1804 +1337 Ultra Sound View
13232235 3 3115 1778 +1337 Aestus View
13237045 9 3269 1933 +1336 BloXroute Regulated View
13232118 6 3190 1856 +1334 Ultra Sound View
13233831 4 3137 1804 +1333 Ultra Sound View
13231075 4 3130 1804 +1326 BloXroute Max Profit View
13232815 0 3023 1700 +1323 BloXroute Max Profit View
13234211 6 3176 1856 +1320 Ultra Sound View
13230150 3 3097 1778 +1319 Aestus View
13235819 3 3097 1778 +1319 Ultra Sound View
13232569 0 3019 1700 +1319 BloXroute Max Profit View
13232751 13 3353 2037 +1316 BloXroute Max Profit View
13234808 3 3093 1778 +1315 Ultra Sound View
13231083 10 3274 1959 +1315 BloXroute Regulated View
13230494 6 3169 1856 +1313 Ultra Sound View
13234566 6 3169 1856 +1313 Flashbots View
13235444 6 3169 1856 +1313 Ultra Sound View
13234257 4 3115 1804 +1311 Aestus View
13233861 1 3037 1726 +1311 Flashbots View
13234960 6 3165 1856 +1309 Agnostic Gnosis View
13233073 3 3087 1778 +1309 Ultra Sound View
13231804 3 3087 1778 +1309 Ultra Sound View
13230239 3 3086 1778 +1308 Agnostic Gnosis View
13230196 10 3267 1959 +1308 Ultra Sound View
13231772 3 3085 1778 +1307 BloXroute Max Profit View
13232550 6 3160 1856 +1304 BloXroute Max Profit View
13232709 4 3107 1804 +1303 BloXroute Regulated View
13232744 7 3183 1882 +1301 BloXroute Max Profit View
13233310 3 3079 1778 +1301 Flashbots View
13236887 3 3079 1778 +1301 BloXroute Regulated View
13230967 3 3078 1778 +1300 Aestus View
13234034 3 3076 1778 +1298 Ultra Sound View
13234012 1 3024 1726 +1298 Flashbots View
13230440 3 3075 1778 +1297 BloXroute Max Profit View
13232434 2 3046 1752 +1294 Flashbots View
13230704 6 3147 1856 +1291 Ultra Sound View
13234446 6 3146 1856 +1290 Flashbots View
13234400 14 3353 2063 +1290 Ultra Sound View
13235133 4 3093 1804 +1289 Ultra Sound View
13230401 0 2989 1700 +1289 Ultra Sound View
13235357 7 3170 1882 +1288 Ultra Sound View
13233699 7 3169 1882 +1287 Flashbots View
13231288 3 3065 1778 +1287 BloXroute Max Profit View
13231623 2 3039 1752 +1287 Ultra Sound View
13233599 0 2987 1700 +1287 Agnostic Gnosis View
13235611 6 3142 1856 +1286 BloXroute Max Profit View
13236508 3 3064 1778 +1286 Agnostic Gnosis View
13230090 0 2986 1700 +1286 Titan Relay View
13235105 7 3167 1882 +1285 Ultra Sound View
13230322 0 2985 1700 +1285 Flashbots View
13233068 3 3062 1778 +1284 Ultra Sound View
13232891 7 3165 1882 +1283 Ultra Sound View
13235026 4 3083 1804 +1279 Ultra Sound View
13230278 8 3185 1908 +1277 BloXroute Max Profit View
13236427 6 3132 1856 +1276 Ultra Sound View
13235922 3 3054 1778 +1276 Agnostic Gnosis View
13234819 3 3054 1778 +1276 Aestus View
13236717 4 3079 1804 +1275 Aestus View
13233622 3 3052 1778 +1274 Ultra Sound View
13235688 10 3233 1959 +1274 BloXroute Regulated View
13231015 8 3180 1908 +1272 BloXroute Max Profit View
13230999 4 3076 1804 +1272 Flashbots View
13235164 3 3048 1778 +1270 Aestus View
13236157 5 3099 1830 +1269 Ultra Sound View
13233303 7 3150 1882 +1268 BloXroute Max Profit View
13230606 7 3149 1882 +1267 Ultra Sound View
13233475 4 3071 1804 +1267 Ultra Sound View
13235436 4 3071 1804 +1267 Ultra Sound View
13234570 3 3044 1778 +1266 Aestus View
13236027 4 3069 1804 +1265 Ultra Sound View
13231871 3 3043 1778 +1265 Flashbots View
13236803 1 2991 1726 +1265 Agnostic Gnosis View
13235314 3 3042 1778 +1264 Ultra Sound View
13236562 3 3042 1778 +1264 Ultra Sound View
13232702 0 2964 1700 +1264 Ultra Sound View
13232362 3 3041 1778 +1263 Ultra Sound View
13232261 3 3040 1778 +1262 Ultra Sound View
13232603 3 3040 1778 +1262 Ultra Sound View
13234728 9 3194 1933 +1261 BloXroute Max Profit View
13236263 7 3142 1882 +1260 BloXroute Max Profit View
13234563 10 3218 1959 +1259 BloXroute Max Profit View
13233903 4 3062 1804 +1258 Agnostic Gnosis View
13232430 3 3036 1778 +1258 BloXroute Max Profit View
13233854 3 3036 1778 +1258 Ultra Sound View
13232579 7 3139 1882 +1257 BloXroute Max Profit View
13234620 6 3112 1856 +1256 Flashbots View
13231418 3 3034 1778 +1256 BloXroute Max Profit View
13233691 3 3034 1778 +1256 BloXroute Max Profit View
13230148 7 3136 1882 +1254 BloXroute Max Profit View
13236311 3 3032 1778 +1254 BloXroute Max Profit View
13231514 6 3109 1856 +1253 Ultra Sound View
13233293 3 3030 1778 +1252 Agnostic Gnosis View
13233947 3 3030 1778 +1252 Ultra Sound View
13233033 10 3210 1959 +1251 Ultra Sound View
13230023 6 3106 1856 +1250 BloXroute Max Profit View
13233466 0 2950 1700 +1250 Ultra Sound View
13233907 3 3027 1778 +1249 Aestus View
13231886 4 3050 1804 +1246 BloXroute Regulated View
13234642 1 2972 1726 +1246 Aestus View
13230610 5 3075 1830 +1245 Agnostic Gnosis View
Total anomalies: 212

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})