Sun, Dec 14, 2025

Propagation anomalies - 2025-12-14

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-14' AND slot_start_date_time < '2025-12-14'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,173
MEV blocks: 6,611 (92.2%)
Local blocks: 562 (7.8%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1636.1 + 24.98 × blob_count (R² = 0.017)
Residual σ = 591.8ms
Anomalies (>2σ slow): 256 (3.6%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13244112 0 6758 1636 +5122 Local View
13243015 0 4144 1636 +2508 Local View
13241653 0 4043 1636 +2407 Local View
13241507 0 3957 1636 +2321 Local View
13243136 0 3763 1636 +2127 BloXroute Max Profit View
13239808 0 3719 1636 +2083 Local View
13241075 3 3775 1711 +2064 Agnostic Gnosis View
13238560 7 3800 1811 +1989 BloXroute Regulated View
13238816 0 3614 1636 +1978 Local View
13238015 1 3606 1661 +1945 Ultra Sound View
13241254 3 3586 1711 +1875 Titan Relay View
13243781 0 3478 1636 +1842 BloXroute Regulated View
13237359 7 3608 1811 +1797 Local View
13237774 7 3596 1811 +1785 Ultra Sound View
13241702 10 3658 1886 +1772 Titan Relay View
13237481 9 3626 1861 +1765 BloXroute Regulated View
13244191 0 3399 1636 +1763 Titan Relay View
13241545 4 3493 1736 +1757 Ultra Sound View
13240296 6 3538 1786 +1752 BloXroute Regulated View
13243717 6 3526 1786 +1740 BloXroute Max Profit View
13242982 3 3449 1711 +1738 Ultra Sound View
13242848 3 3435 1711 +1724 Ultra Sound View
13241260 6 3485 1786 +1699 Ultra Sound View
13243518 0 3323 1636 +1687 Ultra Sound View
13243001 4 3420 1736 +1684 Titan Relay View
13239883 9 3530 1861 +1669 Ultra Sound View
13242694 5 3425 1761 +1664 Ultra Sound View
13238716 6 3449 1786 +1663 Ultra Sound View
13240247 3 3373 1711 +1662 Ultra Sound View
13238832 3 3346 1711 +1635 BloXroute Regulated View
13238003 6 3392 1786 +1606 BloXroute Regulated View
13238670 0 3241 1636 +1605 Ultra Sound View
13243406 6 3388 1786 +1602 Ultra Sound View
13241984 9 3445 1861 +1584 BloXroute Regulated View
13237807 6 3370 1786 +1584 Ultra Sound View
13238530 2 3262 1686 +1576 BloXroute Regulated View
13240294 3 3286 1711 +1575 BloXroute Regulated View
13237368 4 3309 1736 +1573 BloXroute Regulated View
13240156 3 3282 1711 +1571 Ultra Sound View
13237259 3 3272 1711 +1561 BloXroute Regulated View
13240718 0 3193 1636 +1557 Ultra Sound View
13237945 6 3340 1786 +1554 BloXroute Regulated View
13239368 4 3288 1736 +1552 Ultra Sound View
13239360 6 3335 1786 +1549 BloXroute Regulated View
13238531 3 3252 1711 +1541 BloXroute Regulated View
13238494 3 3248 1711 +1537 Ultra Sound View
13239486 3 3246 1711 +1535 BloXroute Regulated View
13243049 0 3170 1636 +1534 Flashbots View
13243388 3 3241 1711 +1530 Ultra Sound View
13243950 6 3308 1786 +1522 Titan Relay View
13239427 3 3226 1711 +1515 Ultra Sound View
13240355 4 3247 1736 +1511 BloXroute Regulated View
13244075 5 3266 1761 +1505 Titan Relay View
13244210 4 3241 1736 +1505 BloXroute Regulated View
13238183 4 3240 1736 +1504 BloXroute Regulated View
13241067 3 3212 1711 +1501 BloXroute Regulated View
13240269 13 3460 1961 +1499 Ultra Sound View
13243306 3 3210 1711 +1499 Titan Relay View
13242392 0 3134 1636 +1498 Ultra Sound View
13240992 6 3267 1786 +1481 Ultra Sound View
13239235 3 3189 1711 +1478 Ultra Sound View
13243398 5 3237 1761 +1476 BloXroute Regulated View
13243511 9 3328 1861 +1467 Titan Relay View
13243934 3 3175 1711 +1464 Ultra Sound View
13240256 3 3173 1711 +1462 BloXroute Max Profit View
13239790 5 3219 1761 +1458 Flashbots View
13237874 6 3237 1786 +1451 BloXroute Regulated View
13242899 4 3184 1736 +1448 Ultra Sound View
13238338 3 3157 1711 +1446 Ultra Sound View
13237427 3 3153 1711 +1442 Flashbots View
13242150 6 3224 1786 +1438 BloXroute Regulated View
13237497 7 3247 1811 +1436 Titan Relay View
13241275 0 3072 1636 +1436 BloXroute Max Profit View
13244141 1 3094 1661 +1433 Aestus View
13240708 0 3067 1636 +1431 BloXroute Max Profit View
13239483 7 3241 1811 +1430 Ultra Sound View
13240473 10 3309 1886 +1423 BloXroute Regulated View
13238134 4 3157 1736 +1421 Ultra Sound View
13242313 4 3156 1736 +1420 Flashbots View
13242054 9 3272 1861 +1411 Titan Relay View
13237366 11 3320 1911 +1409 BloXroute Max Profit View
13240054 5 3170 1761 +1409 Titan Relay View
13241046 6 3194 1786 +1408 Ultra Sound View
13242123 3 3116 1711 +1405 Titan Relay View
13243497 3 3114 1711 +1403 Titan Relay View
13243133 3 3111 1711 +1400 Titan Relay View
13237985 0 3031 1636 +1395 Ultra Sound View
13237764 4 3128 1736 +1392 BloXroute Max Profit View
13237821 4 3127 1736 +1391 Titan Relay View
13241441 6 3172 1786 +1386 Titan Relay View
13237270 3 3095 1711 +1384 BloXroute Max Profit View
13240915 3 3093 1711 +1382 Ultra Sound View
13240621 6 3166 1786 +1380 Local View
13239066 6 3156 1786 +1370 BloXroute Regulated View
13242300 0 3005 1636 +1369 Ultra Sound View
13241910 5 3127 1761 +1366 BloXroute Max Profit View
13241971 0 3001 1636 +1365 Aestus View
13241043 5 3125 1761 +1364 Ultra Sound View
13241503 3 3074 1711 +1363 Aestus View
13237382 3 3074 1711 +1363 Titan Relay View
13243648 3 3073 1711 +1362 Ultra Sound View
13243243 0 2998 1636 +1362 BloXroute Regulated View
13243090 8 3194 1836 +1358 Flashbots View
13240789 6 3144 1786 +1358 BloXroute Regulated View
13244125 6 3143 1786 +1357 Ultra Sound View
13240324 9 3213 1861 +1352 Agnostic Gnosis View
13244292 9 3212 1861 +1351 Ultra Sound View
13241472 3 3062 1711 +1351 Ultra Sound View
13239079 4 3073 1736 +1337 Aestus View
13243623 4 3073 1736 +1337 Ultra Sound View
13241052 3 3047 1711 +1336 Ultra Sound View
13239573 1 2997 1661 +1336 Aestus View
13242794 3 3044 1711 +1333 Agnostic Gnosis View
13242099 6 3116 1786 +1330 Titan Relay View
13244352 3 3039 1711 +1328 Flashbots View
13238252 4 3062 1736 +1326 Flashbots View
13242665 4 3062 1736 +1326 Ultra Sound View
13241357 3 3036 1711 +1325 Ultra Sound View
13240244 3 3036 1711 +1325 Ultra Sound View
13240884 13 3281 1961 +1320 Titan Relay View
13243495 0 2955 1636 +1319 BloXroute Regulated View
13243002 7 3129 1811 +1318 Ultra Sound View
13242005 7 3129 1811 +1318 Aestus View
13243870 4 3054 1736 +1318 Ultra Sound View
13238940 0 2953 1636 +1317 Agnostic Gnosis View
13238798 12 3250 1936 +1314 BloXroute Max Profit View
13238481 4 3050 1736 +1314 Agnostic Gnosis View
13241193 7 3121 1811 +1310 Agnostic Gnosis View
13243863 3 3020 1711 +1309 Ultra Sound View
13240380 0 2945 1636 +1309 BloXroute Max Profit View
13238166 3 3017 1711 +1306 Ultra Sound View
13240613 9 3166 1861 +1305 Aestus View
13237753 3 3012 1711 +1301 Ultra Sound View
13238793 7 3110 1811 +1299 BloXroute Max Profit View
13243195 3 3010 1711 +1299 Titan Relay View
13241970 11 3208 1911 +1297 Ultra Sound View
13238373 7 3106 1811 +1295 BloXroute Max Profit View
13238139 4 3031 1736 +1295 Aestus View
13238319 4 3030 1736 +1294 Agnostic Gnosis View
13237388 4 3029 1736 +1293 BloXroute Max Profit View
13240916 3 3004 1711 +1293 Ultra Sound View
13242823 3 3001 1711 +1290 BloXroute Regulated View
13241401 14 3275 1986 +1289 Ultra Sound View
13242566 6 3074 1786 +1288 Ultra Sound View
13244219 4 3024 1736 +1288 Agnostic Gnosis View
13237823 3 2997 1711 +1286 Ultra Sound View
13243085 3 2997 1711 +1286 Agnostic Gnosis View
13237942 0 2922 1636 +1286 Ultra Sound View
13237662 7 3096 1811 +1285 Ultra Sound View
13239596 4 3021 1736 +1285 Agnostic Gnosis View
13241875 8 3120 1836 +1284 Ultra Sound View
13238005 6 3070 1786 +1284 EthGas View
13242786 4 3019 1736 +1283 Ultra Sound View
13242116 3 2994 1711 +1283 Aestus View
13237845 5 3043 1761 +1282 Agnostic Gnosis View
13240954 4 3017 1736 +1281 Flashbots View
13243830 4 3017 1736 +1281 Titan Relay View
13240769 3 2992 1711 +1281 Ultra Sound View
13237879 3 2992 1711 +1281 Agnostic Gnosis View
13237514 3 2992 1711 +1281 Aestus View
13237899 4 3016 1736 +1280 Ultra Sound View
13240696 0 2915 1636 +1279 Agnostic Gnosis View
13240281 7 3089 1811 +1278 Ultra Sound View
13238573 8 3112 1836 +1276 Ultra Sound View
13242544 3 2987 1711 +1276 Titan Relay View
13238680 0 2912 1636 +1276 Ultra Sound View
13239552 7 3086 1811 +1275 Ultra Sound View
13237870 5 3036 1761 +1275 Flashbots View
13243374 3 2986 1711 +1275 Agnostic Gnosis View
13239612 3 2986 1711 +1275 Agnostic Gnosis View
13243909 3 2982 1711 +1271 Ultra Sound View
13242783 4 3006 1736 +1270 Ultra Sound View
13237731 3 2978 1711 +1267 Agnostic Gnosis View
13239597 7 3077 1811 +1266 Ultra Sound View
13239691 5 3027 1761 +1266 Ultra Sound View
13240917 7 3073 1811 +1262 Flashbots View
13237717 6 3048 1786 +1262 BloXroute Regulated View
13244111 3 2973 1711 +1262 Ultra Sound View
13241374 3 2973 1711 +1262 BloXroute Max Profit View
13241377 9 3122 1861 +1261 Ultra Sound View
13240152 7 3072 1811 +1261 BloXroute Max Profit View
13239168 10 3145 1886 +1259 BloXroute Max Profit View
13242041 4 2995 1736 +1259 BloXroute Max Profit View
13238126 5 3019 1761 +1258 Agnostic Gnosis View
13238563 4 2994 1736 +1258 BloXroute Max Profit View
13239148 9 3117 1861 +1256 BloXroute Max Profit View
13240009 7 3065 1811 +1254 Agnostic Gnosis View
13241719 8 3088 1836 +1252 Ultra Sound View
13244365 3 2962 1711 +1251 Flashbots View
13237635 7 3061 1811 +1250 Agnostic Gnosis View
13239639 4 2986 1736 +1250 Ultra Sound View
13243436 1 2911 1661 +1250 BloXroute Max Profit View
13241800 7 3059 1811 +1248 Titan Relay View
13243169 11 3157 1911 +1246 Agnostic Gnosis View
13241526 4 2982 1736 +1246 Ultra Sound View
13243009 0 2882 1636 +1246 BloXroute Max Profit View
13244251 3 2955 1711 +1244 Ultra Sound View
13239957 12 3176 1936 +1240 BloXroute Max Profit View
13238703 4 2976 1736 +1240 Flashbots View
13238712 7 3048 1811 +1237 BloXroute Max Profit View
13241901 4 2973 1736 +1237 Ultra Sound View
13241278 10 3121 1886 +1235 Ultra Sound View
13243772 6 3018 1786 +1232 Agnostic Gnosis View
13240608 6 3017 1786 +1231 Titan Relay View
13237738 4 2967 1736 +1231 Ultra Sound View
13239789 11 3141 1911 +1230 BloXroute Max Profit View
13237433 3 2941 1711 +1230 BloXroute Regulated View
13242568 5 2988 1761 +1227 Flashbots View
13243422 4 2963 1736 +1227 Agnostic Gnosis View
13239206 9 3087 1861 +1226 Ultra Sound View
13243566 3 2937 1711 +1226 Ultra Sound View
13243625 0 2861 1636 +1225 BloXroute Regulated View
13243209 7 3034 1811 +1223 BloXroute Regulated View
13237658 3 2934 1711 +1223 BloXroute Max Profit View
13238985 3 2934 1711 +1223 Titan Relay View
13242125 6 3006 1786 +1220 BloXroute Regulated View
13240470 6 3005 1786 +1219 Flashbots View
13240702 4 2954 1736 +1218 Flashbots View
13243645 5 2978 1761 +1217 BloXroute Max Profit View
13241611 3 2928 1711 +1217 Agnostic Gnosis View
13239831 4 2952 1736 +1216 BloXroute Regulated View
13238840 4 2952 1736 +1216 BloXroute Regulated View
13242626 12 3150 1936 +1214 BloXroute Regulated View
13238358 6 3000 1786 +1214 Ultra Sound View
13244066 5 2975 1761 +1214 BloXroute Max Profit View
13237736 10 3099 1886 +1213 BloXroute Max Profit View
13237739 6 2999 1786 +1213 BloXroute Max Profit View
13243340 4 2949 1736 +1213 Aestus View
13243624 4 2949 1736 +1213 Agnostic Gnosis View
13237254 6 2997 1786 +1211 Ultra Sound View
13238873 6 2996 1786 +1210 Ultra Sound View
13237690 5 2971 1761 +1210 Titan Relay View
13242682 3 2921 1711 +1210 Aestus View
13243499 6 2995 1786 +1209 Ultra Sound View
13240106 4 2945 1736 +1209 Ultra Sound View
13240792 4 2944 1736 +1208 Ultra Sound View
13239030 4 2943 1736 +1207 Aestus View
13243530 3 2918 1711 +1207 Ultra Sound View
13243695 3 2916 1711 +1205 Agnostic Gnosis View
13241398 6 2990 1786 +1204 Ultra Sound View
13240750 6 2989 1786 +1203 Aestus View
13240576 4 2936 1736 +1200 EthGas View
13242291 3 2911 1711 +1200 Flashbots View
13240354 0 2833 1636 +1197 BloXroute Max Profit View
13243716 4 2931 1736 +1195 Flashbots View
13240487 3 2906 1711 +1195 Ultra Sound View
13240163 11 3102 1911 +1191 BloXroute Max Profit View
13243613 9 3052 1861 +1191 Ultra Sound View
13239926 7 3002 1811 +1191 Flashbots View
13241268 6 2976 1786 +1190 Ultra Sound View
13242112 9 3049 1861 +1188 Agnostic Gnosis View
13242452 6 2974 1786 +1188 BloXroute Regulated View
13243937 4 2924 1736 +1188 Agnostic Gnosis View
13242013 4 2924 1736 +1188 Ultra Sound View
13239581 3 2899 1711 +1188 Ultra Sound View
13241343 15 3197 2011 +1186 Ultra Sound View
Total anomalies: 256

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})