Tue, Dec 16, 2025

Propagation anomalies - 2025-12-16

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-16' AND slot_start_date_time < '2025-12-16'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-16' AND slot_start_date_time < '2025-12-16'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-16' AND slot_start_date_time < '2025-12-16'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-16' AND slot_start_date_time < '2025-12-16'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-16' AND slot_start_date_time < '2025-12-16'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-16' AND slot_start_date_time < '2025-12-16'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-16' AND slot_start_date_time < '2025-12-16'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-16' AND slot_start_date_time < '2025-12-16'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,174
MEV blocks: 6,636 (92.5%)
Local blocks: 538 (7.5%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1676.0 + 21.50 × blob_count (R² = 0.019)
Residual σ = 606.9ms
Anomalies (>2σ slow): 247 (3.4%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13258248 0 7286 1676 +5610 Local View
13256803 0 5880 1676 +4204 Local View
13257798 0 5220 1676 +3544 Local View
13254272 1 4881 1698 +3183 Local View
13253449 0 4753 1676 +3077 Local View
13256116 0 4550 1676 +2874 Local View
13254666 0 4514 1676 +2838 Local View
13257760 0 4387 1676 +2711 Local View
13251823 0 3809 1676 +2133 Local View
13257396 4 3874 1762 +2112 EthGas View
13252448 0 3766 1676 +2090 Local View
13253237 0 3714 1676 +2038 Aestus View
13256118 0 3656 1676 +1980 Local View
13253165 0 3646 1676 +1970 Agnostic Gnosis View
13256108 9 3822 1870 +1952 Titan Relay View
13254215 4 3707 1762 +1945 BloXroute Max Profit View
13252704 1 3621 1698 +1923 Aestus View
13253376 1 3587 1698 +1889 Agnostic Gnosis View
13256712 5 3656 1784 +1872 BloXroute Regulated View
13255179 3 3596 1741 +1855 Ultra Sound View
13258640 4 3600 1762 +1838 Titan Relay View
13258422 5 3615 1784 +1831 BloXroute Regulated View
13255230 5 3601 1784 +1817 BloXroute Regulated View
13258338 6 3611 1805 +1806 Titan Relay View
13258308 8 3622 1848 +1774 Ultra Sound View
13251831 5 3552 1784 +1768 BloXroute Regulated View
13255723 8 3610 1848 +1762 Titan Relay View
13257824 7 3569 1827 +1742 BloXroute Regulated View
13255152 8 3577 1848 +1729 Ultra Sound View
13254976 0 3405 1676 +1729 Ultra Sound View
13253309 3 3459 1741 +1718 BloXroute Max Profit View
13257604 8 3566 1848 +1718 Titan Relay View
13254094 3 3458 1741 +1717 BloXroute Regulated View
13256998 10 3606 1891 +1715 Ultra Sound View
13256711 11 3601 1913 +1688 BloXroute Regulated View
13252022 6 3491 1805 +1686 Ultra Sound View
13254304 0 3362 1676 +1686 Ultra Sound View
13253676 0 3355 1676 +1679 Ultra Sound View
13255597 0 3354 1676 +1678 Ultra Sound View
13254614 11 3584 1913 +1671 Ultra Sound View
13251953 0 3341 1676 +1665 Titan Relay View
13257747 14 3635 1977 +1658 BloXroute Regulated View
13256129 10 3541 1891 +1650 EthGas View
13256838 1 3325 1698 +1627 BloXroute Regulated View
13251809 12 3554 1934 +1620 Titan Relay View
13258058 0 3288 1676 +1612 Ultra Sound View
13256884 5 3391 1784 +1607 Ultra Sound View
13255584 6 3407 1805 +1602 BloXroute Max Profit View
13254126 10 3478 1891 +1587 Titan Relay View
13254627 11 3492 1913 +1579 Ultra Sound View
13256068 0 3251 1676 +1575 BloXroute Regulated View
13252929 6 3362 1805 +1557 Ultra Sound View
13254467 3 3290 1741 +1549 BloXroute Regulated View
13252746 3 3289 1741 +1548 Ultra Sound View
13254104 4 3305 1762 +1543 BloXroute Regulated View
13252904 0 3197 1676 +1521 Ultra Sound View
13255676 15 3519 1998 +1521 BloXroute Regulated View
13255117 5 3299 1784 +1515 Titan Relay View
13258643 6 3306 1805 +1501 BloXroute Regulated View
13256656 11 3412 1913 +1499 BloXroute Regulated View
13256706 7 3323 1827 +1496 Ultra Sound View
13255431 6 3301 1805 +1496 BloXroute Regulated View
13255939 11 3406 1913 +1493 BloXroute Regulated View
13252362 3 3234 1741 +1493 Ultra Sound View
13256455 3 3231 1741 +1490 Ultra Sound View
13258073 11 3402 1913 +1489 BloXroute Regulated View
13254016 9 3352 1870 +1482 BloXroute Max Profit View
13256893 7 3308 1827 +1481 Ultra Sound View
13256896 1 3171 1698 +1473 EthGas View
13255308 6 3277 1805 +1472 Titan Relay View
13253878 4 3233 1762 +1471 Flashbots View
13258068 9 3335 1870 +1465 BloXroute Regulated View
13254067 13 3416 1955 +1461 BloXroute Regulated View
13254999 9 3330 1870 +1460 BloXroute Regulated View
13251744 3 3196 1741 +1455 BloXroute Regulated View
13253758 3 3195 1741 +1454 BloXroute Regulated View
13255093 3 3195 1741 +1454 Ultra Sound View
13252297 8 3301 1848 +1453 Ultra Sound View
13253725 5 3232 1784 +1448 BloXroute Max Profit View
13255435 4 3210 1762 +1448 Titan Relay View
13258076 5 3227 1784 +1443 Agnostic Gnosis View
13255363 0 3119 1676 +1443 Ultra Sound View
13257363 7 3268 1827 +1441 Ultra Sound View
13256651 0 3117 1676 +1441 BloXroute Max Profit View
13255557 11 3350 1913 +1437 Ultra Sound View
13258486 3 3176 1741 +1435 Ultra Sound View
13256396 1 3132 1698 +1434 Ultra Sound View
13258157 11 3343 1913 +1430 BloXroute Regulated View
13254670 6 3232 1805 +1427 BloXroute Regulated View
13255264 5 3210 1784 +1426 Ultra Sound View
13254997 5 3209 1784 +1425 BloXroute Regulated View
13255843 11 3337 1913 +1424 Ultra Sound View
13256590 12 3353 1934 +1419 Titan Relay View
13254723 4 3180 1762 +1418 Aestus View
13257492 0 3093 1676 +1417 Aestus View
13256242 0 3093 1676 +1417 Aestus View
13256124 12 3350 1934 +1416 Ultra Sound View
13253159 5 3198 1784 +1414 Local View
13255239 1 3108 1698 +1410 BloXroute Regulated View
13258388 8 3258 1848 +1410 Titan Relay View
13258554 5 3192 1784 +1408 Agnostic Gnosis View
13252820 5 3191 1784 +1407 Ultra Sound View
13256427 1 3105 1698 +1407 Titan Relay View
13255487 0 3083 1676 +1407 Agnostic Gnosis View
13256380 13 3355 1955 +1400 Ultra Sound View
13252310 1 3093 1698 +1395 BloXroute Regulated View
13256790 8 3241 1848 +1393 Agnostic Gnosis View
13258420 9 3262 1870 +1392 Titan Relay View
13258291 3 3131 1741 +1390 Titan Relay View
13257659 11 3302 1913 +1389 Titan Relay View
13255541 0 3064 1676 +1388 Titan Relay View
13256699 0 3064 1676 +1388 Titan Relay View
13256695 3 3128 1741 +1387 Ultra Sound View
13255850 3 3127 1741 +1386 Agnostic Gnosis View
13255186 4 3148 1762 +1386 Aestus View
13257314 8 3232 1848 +1384 Ultra Sound View
13258130 1 3080 1698 +1382 Ultra Sound View
13258414 2 3100 1719 +1381 BloXroute Max Profit View
13254992 6 3184 1805 +1379 Aestus View
13254786 5 3161 1784 +1377 Ultra Sound View
13254966 1 3074 1698 +1376 Flashbots View
13255393 3 3115 1741 +1374 Aestus View
13253664 10 3265 1891 +1374 Agnostic Gnosis View
13256401 0 3049 1676 +1373 Agnostic Gnosis View
13255542 8 3219 1848 +1371 BloXroute Max Profit View
13254401 6 3171 1805 +1366 Agnostic Gnosis View
13257382 5 3146 1784 +1362 Ultra Sound View
13258163 0 3035 1676 +1359 Ultra Sound View
13255834 11 3271 1913 +1358 BloXroute Regulated View
13254650 0 3033 1676 +1357 Ultra Sound View
13257636 0 3033 1676 +1357 Agnostic Gnosis View
13256110 11 3268 1913 +1355 Ultra Sound View
13257261 0 3030 1676 +1354 Agnostic Gnosis View
13258537 13 3308 1955 +1353 BloXroute Regulated View
13255547 8 3200 1848 +1352 Ultra Sound View
13257596 10 3241 1891 +1350 Agnostic Gnosis View
13258458 3 3088 1741 +1347 Ultra Sound View
13256449 8 3195 1848 +1347 BloXroute Max Profit View
13257502 8 3195 1848 +1347 Agnostic Gnosis View
13256554 3 3087 1741 +1346 Aestus View
13254338 0 3019 1676 +1343 BloXroute Regulated View
13256206 0 3019 1676 +1343 Flashbots View
13256916 3 3083 1741 +1342 BloXroute Regulated View
13253796 8 3190 1848 +1342 BloXroute Max Profit View
13257829 6 3147 1805 +1342 BloXroute Max Profit View
13254235 1 3039 1698 +1341 Titan Relay View
13255657 15 3338 1998 +1340 Titan Relay View
13257177 0 3012 1676 +1336 Ultra Sound View
13255726 1 3032 1698 +1334 Ultra Sound View
13255220 5 3117 1784 +1333 BloXroute Regulated View
13257634 5 3117 1784 +1333 BloXroute Max Profit View
13252885 0 3009 1676 +1333 BloXroute Regulated View
13254693 1 3030 1698 +1332 Ultra Sound View
13254317 9 3201 1870 +1331 Agnostic Gnosis View
13258135 1 3029 1698 +1331 BloXroute Max Profit View
13254550 10 3222 1891 +1331 BloXroute Regulated View
13258452 9 3200 1870 +1330 Aestus View
13255141 3 3071 1741 +1330 Ultra Sound View
13256267 6 3135 1805 +1330 Flashbots View
13254303 11 3241 1913 +1328 Ultra Sound View
13254814 7 3155 1827 +1328 Ultra Sound View
13257830 3 3068 1741 +1327 BloXroute Regulated View
13256760 3 3068 1741 +1327 Ultra Sound View
13258721 12 3261 1934 +1327 Ultra Sound View
13254818 0 3003 1676 +1327 Ultra Sound View
13257708 0 3000 1676 +1324 Ultra Sound View
13254593 1 3021 1698 +1323 BloXroute Max Profit View
13258134 4 3085 1762 +1323 BloXroute Max Profit View
13252725 11 3235 1913 +1322 BloXroute Regulated View
13252042 7 3149 1827 +1322 Ultra Sound View
13258379 5 3104 1784 +1320 Aestus View
13254820 6 3122 1805 +1317 Ultra Sound View
13258171 11 3223 1913 +1310 Ultra Sound View
13253351 5 3094 1784 +1310 Local View
13255086 12 3244 1934 +1310 Ultra Sound View
13254319 4 3071 1762 +1309 Agnostic Gnosis View
13255586 3 3048 1741 +1307 Ultra Sound View
13254783 11 3218 1913 +1305 Ultra Sound View
13252770 3 3045 1741 +1304 BloXroute Regulated View
13254942 12 3238 1934 +1304 Ultra Sound View
13253096 8 3151 1848 +1303 BloXroute Regulated View
13254781 5 3086 1784 +1302 Titan Relay View
13253239 9 3171 1870 +1301 BloXroute Regulated View
13255377 1 2999 1698 +1301 Flashbots View
13256988 0 2976 1676 +1300 Agnostic Gnosis View
13255588 4 3060 1762 +1298 BloXroute Max Profit View
13251787 13 3253 1955 +1298 Ultra Sound View
13255266 14 3272 1977 +1295 BloXroute Max Profit View
13255540 5 3078 1784 +1294 Aestus View
13258518 5 3074 1784 +1290 Agnostic Gnosis View
13254322 0 2963 1676 +1287 Agnostic Gnosis View
13256232 8 3133 1848 +1285 BloXroute Max Profit View
13258505 7 3111 1827 +1284 BloXroute Regulated View
13255247 3 3025 1741 +1284 BloXroute Max Profit View
13254042 6 3088 1805 +1283 Titan Relay View
13253408 4 3044 1762 +1282 Aestus View
13257682 3 3022 1741 +1281 Aestus View
13258457 5 3064 1784 +1280 Aestus View
13256019 7 3106 1827 +1279 BloXroute Regulated View
13256117 0 2955 1676 +1279 BloXroute Max Profit View
13255700 11 3191 1913 +1278 Ultra Sound View
13256591 9 3145 1870 +1275 Agnostic Gnosis View
13256196 4 3037 1762 +1275 Ultra Sound View
13258715 3 3014 1741 +1273 Ultra Sound View
13253821 5 3056 1784 +1272 Ultra Sound View
13257933 6 3077 1805 +1272 BloXroute Regulated View
13257881 9 3141 1870 +1271 BloXroute Regulated View
13256900 7 3098 1827 +1271 Ultra Sound View
13256500 3 3011 1741 +1270 Titan Relay View
13254204 5 3053 1784 +1269 BloXroute Regulated View
13255931 4 3031 1762 +1269 Agnostic Gnosis View
13257749 8 3112 1848 +1264 BloXroute Max Profit View
13256327 0 2940 1676 +1264 Ultra Sound View
13253850 0 2939 1676 +1263 BloXroute Max Profit View
13254353 5 3043 1784 +1259 BloXroute Max Profit View
13254716 4 3021 1762 +1259 Agnostic Gnosis View
13252016 5 3042 1784 +1258 BloXroute Regulated View
13257417 2 2977 1719 +1258 Ultra Sound View
13253442 3 2998 1741 +1257 BloXroute Max Profit View
13258335 5 3038 1784 +1254 Flashbots View
13254145 5 3037 1784 +1253 Ultra Sound View
13254665 9 3121 1870 +1251 Ultra Sound View
13255400 6 3056 1805 +1251 BloXroute Max Profit View
13258398 3 2991 1741 +1250 Ultra Sound View
13253642 10 3139 1891 +1248 BloXroute Regulated View
13258046 5 3029 1784 +1245 BloXroute Max Profit View
13256798 5 3027 1784 +1243 Ultra Sound View
13257549 6 3047 1805 +1242 Titan Relay View
13255273 13 3197 1955 +1242 BloXroute Max Profit View
13254081 1 2937 1698 +1239 Aestus View
13257420 6 3044 1805 +1239 Ultra Sound View
13254040 5 3020 1784 +1236 Agnostic Gnosis View
13255428 10 3126 1891 +1235 BloXroute Max Profit View
13252376 6 3039 1805 +1234 BloXroute Regulated View
13255658 13 3188 1955 +1233 BloXroute Max Profit View
13258641 5 3016 1784 +1232 Aestus View
13253308 5 3016 1784 +1232 Ultra Sound View
13256245 0 2906 1676 +1230 Ultra Sound View
13256917 11 3139 1913 +1226 BloXroute Max Profit View
13252414 6 3031 1805 +1226 Aestus View
13253995 3 2965 1741 +1224 Ultra Sound View
13256653 9 3093 1870 +1223 BloXroute Regulated View
13252664 11 3133 1913 +1220 Ultra Sound View
13253557 4 2979 1762 +1217 Ultra Sound View
13254796 15 3215 1998 +1217 BloXroute Max Profit View
13257828 7 3042 1827 +1215 Ultra Sound View
13254058 6 3019 1805 +1214 Ultra Sound View
Total anomalies: 247

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})