Wed, Dec 17, 2025

Propagation anomalies - 2025-12-17

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-17' AND slot_start_date_time < '2025-12-17'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-17' AND slot_start_date_time < '2025-12-17'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-17' AND slot_start_date_time < '2025-12-17'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-17' AND slot_start_date_time < '2025-12-17'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-17' AND slot_start_date_time < '2025-12-17'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-17' AND slot_start_date_time < '2025-12-17'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-17' AND slot_start_date_time < '2025-12-17'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-17' AND slot_start_date_time < '2025-12-17'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,170
MEV blocks: 6,641 (92.6%)
Local blocks: 529 (7.4%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1786.7 + 14.97 × blob_count (R² = 0.013)
Residual σ = 616.0ms
Anomalies (>2σ slow): 223 (3.1%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13264567 0 10272 1787 +8485 Local View
13264297 0 9198 1787 +7411 Local View
13258900 0 4734 1787 +2947 Local View
13263137 0 4388 1787 +2601 Local View
13263426 1 4019 1802 +2217 Ultra Sound View
13263300 0 3944 1787 +2157 Local View
13260590 0 3900 1787 +2113 Local View
13260702 6 3895 1877 +2018 Ultra Sound View
13260459 10 3911 1936 +1975 Local View
13263073 0 3684 1787 +1897 BloXroute Max Profit View
13262739 7 3777 1892 +1885 Titan Relay View
13260412 0 3631 1787 +1844 Titan Relay View
13265120 1 3641 1802 +1839 Ultra Sound View
13260101 6 3690 1877 +1813 Titan Relay View
13259790 9 3711 1921 +1790 Ultra Sound View
13263821 14 3785 1996 +1789 BloXroute Regulated View
13258878 8 3686 1907 +1779 BloXroute Regulated View
13262120 11 3728 1951 +1777 Titan Relay View
13264537 8 3670 1907 +1763 Ultra Sound View
13259945 1 3539 1802 +1737 Ultra Sound View
13262969 4 3581 1847 +1734 Ultra Sound View
13260423 9 3655 1921 +1734 BloXroute Regulated View
13262953 6 3609 1877 +1732 Ultra Sound View
13265390 3 3564 1832 +1732 Agnostic Gnosis View
13261415 8 3635 1907 +1728 Ultra Sound View
13260749 7 3613 1892 +1721 Ultra Sound View
13265649 5 3572 1862 +1710 Ultra Sound View
13258954 4 3557 1847 +1710 BloXroute Regulated View
13261177 3 3535 1832 +1703 Ultra Sound View
13262421 8 3608 1907 +1701 Ultra Sound View
13263131 5 3561 1862 +1699 Ultra Sound View
13263030 9 3602 1921 +1681 Ultra Sound View
13265344 1 3456 1802 +1654 Ultra Sound View
13263571 14 3635 1996 +1639 Ultra Sound View
13261421 0 3420 1787 +1633 Ultra Sound View
13263741 5 3477 1862 +1615 Local View
13263338 5 3469 1862 +1607 Ultra Sound View
13262638 0 3390 1787 +1603 Ultra Sound View
13264183 5 3464 1862 +1602 Local View
13262558 1 3368 1802 +1566 EthGas View
13265962 8 3469 1907 +1562 Ultra Sound View
13263117 13 3540 1981 +1559 Titan Relay View
13261088 8 3465 1907 +1558 Titan Relay View
13261158 0 3329 1787 +1542 Ultra Sound View
13260124 0 3317 1787 +1530 Aestus View
13260842 0 3314 1787 +1527 Titan Relay View
13261716 3 3356 1832 +1524 Titan Relay View
13263911 0 3307 1787 +1520 Ultra Sound View
13263284 0 3305 1787 +1518 Ultra Sound View
13263968 3 3342 1832 +1510 Ultra Sound View
13263579 0 3291 1787 +1504 Titan Relay View
13261780 6 3380 1877 +1503 Titan Relay View
13261713 4 3350 1847 +1503 Ultra Sound View
13264543 0 3288 1787 +1501 Ultra Sound View
13265312 14 3496 1996 +1500 BloXroute Max Profit View
13261060 6 3372 1877 +1495 Titan Relay View
13259616 5 3355 1862 +1493 Ultra Sound View
13263153 15 3500 2011 +1489 BloXroute Max Profit View
13265371 8 3394 1907 +1487 BloXroute Regulated View
13263458 6 3364 1877 +1487 Ultra Sound View
13265496 10 3421 1936 +1485 Ultra Sound View
13265741 0 3266 1787 +1479 Flashbots View
13263915 4 3325 1847 +1478 BloXroute Regulated View
13261414 0 3264 1787 +1477 BloXroute Regulated View
13260796 5 3334 1862 +1472 Titan Relay View
13263358 0 3259 1787 +1472 Ultra Sound View
13261999 11 3419 1951 +1468 BloXroute Regulated View
13260993 3 3297 1832 +1465 Agnostic Gnosis View
13258979 5 3325 1862 +1463 BloXroute Regulated View
13265770 15 3473 2011 +1462 BloXroute Regulated View
13264010 12 3426 1966 +1460 Ultra Sound View
13262333 8 3364 1907 +1457 Titan Relay View
13263480 0 3242 1787 +1455 BloXroute Max Profit View
13262994 6 3331 1877 +1454 BloXroute Regulated View
13263211 6 3329 1877 +1452 Ultra Sound View
13261344 13 3433 1981 +1452 Aestus View
13265038 8 3353 1907 +1446 BloXroute Regulated View
13262292 0 3232 1787 +1445 BloXroute Regulated View
13258941 10 3378 1936 +1442 Titan Relay View
13263703 11 3391 1951 +1440 Ultra Sound View
13264832 15 3441 2011 +1430 Ultra Sound View
13262410 11 3378 1951 +1427 Ultra Sound View
13265915 5 3285 1862 +1423 BloXroute Regulated View
13259242 4 3270 1847 +1423 Ultra Sound View
13264401 9 3344 1921 +1423 Titan Relay View
13262000 0 3209 1787 +1422 Ultra Sound View
13263872 14 3416 1996 +1420 Titan Relay View
13262594 5 3279 1862 +1417 Ultra Sound View
13264306 0 3202 1787 +1415 BloXroute Max Profit View
13264565 3 3245 1832 +1413 Agnostic Gnosis View
13259417 9 3330 1921 +1409 BloXroute Regulated View
13259500 7 3299 1892 +1407 Ultra Sound View
13264976 6 3284 1877 +1407 BloXroute Regulated View
13261280 1 3206 1802 +1404 EthGas View
13260615 10 3336 1936 +1400 Ultra Sound View
13265910 5 3260 1862 +1398 BloXroute Regulated View
13260158 6 3273 1877 +1396 BloXroute Regulated View
13263767 0 3177 1787 +1390 BloXroute Regulated View
13263530 14 3384 1996 +1388 Ultra Sound View
13263939 11 3339 1951 +1388 Titan Relay View
13259555 6 3259 1877 +1382 Ultra Sound View
13264881 5 3244 1862 +1382 Titan Relay View
13263580 15 3392 2011 +1381 Titan Relay View
13265621 14 3376 1996 +1380 BloXroute Regulated View
13265810 10 3313 1936 +1377 BloXroute Regulated View
13262903 0 3162 1787 +1375 Titan Relay View
13261712 8 3281 1907 +1374 BloXroute Regulated View
13265536 15 3384 2011 +1373 Aestus View
13261597 9 3291 1921 +1370 Ultra Sound View
13261358 5 3230 1862 +1368 Ultra Sound View
13264293 15 3378 2011 +1367 BloXroute Max Profit View
13263389 4 3212 1847 +1365 Ultra Sound View
13265008 6 3241 1877 +1364 BloXroute Regulated View
13264140 5 3225 1862 +1363 BloXroute Max Profit View
13262128 8 3268 1907 +1361 Ultra Sound View
13261284 14 3354 1996 +1358 Ultra Sound View
13263805 0 3143 1787 +1356 Aestus View
13262497 1 3157 1802 +1355 Ultra Sound View
13262718 6 3228 1877 +1351 BloXroute Max Profit View
13261796 13 3331 1981 +1350 BloXroute Regulated View
13264210 3 3173 1832 +1341 BloXroute Regulated View
13261223 6 3217 1877 +1340 Ultra Sound View
13262270 0 3126 1787 +1339 Ultra Sound View
13265760 14 3334 1996 +1338 Flashbots View
13263826 8 3243 1907 +1336 BloXroute Regulated View
13259457 1 3135 1802 +1333 Agnostic Gnosis View
13259882 0 3119 1787 +1332 Aestus View
13264765 8 3238 1907 +1331 BloXroute Max Profit View
13263233 0 3118 1787 +1331 Ultra Sound View
13262255 0 3117 1787 +1330 BloXroute Regulated View
13262579 15 3338 2011 +1327 Ultra Sound View
13263906 0 3113 1787 +1326 Flashbots View
13264946 6 3201 1877 +1324 Agnostic Gnosis View
13265153 3 3156 1832 +1324 BloXroute Max Profit View
13263469 15 3335 2011 +1324 Agnostic Gnosis View
13264643 10 3258 1936 +1322 Flashbots View
13259776 1 3123 1802 +1321 Ultra Sound View
13264055 12 3286 1966 +1320 Titan Relay View
13260876 0 3106 1787 +1319 Agnostic Gnosis View
13265400 15 3330 2011 +1319 Ultra Sound View
13263687 15 3329 2011 +1318 BloXroute Regulated View
13262237 14 3311 1996 +1315 EthGas View
13264587 9 3234 1921 +1313 Flashbots View
13263360 1 3112 1802 +1310 BloXroute Max Profit View
13263554 0 3091 1787 +1304 Aestus View
13262240 12 3270 1966 +1304 Ultra Sound View
13264836 14 3298 1996 +1302 BloXroute Regulated View
13264924 0 3087 1787 +1300 BloXroute Regulated View
13265988 8 3205 1907 +1298 Ultra Sound View
13261847 6 3174 1877 +1297 Aestus View
13260820 5 3159 1862 +1297 Titan Relay View
13263190 4 3144 1847 +1297 BloXroute Max Profit View
13261989 15 3308 2011 +1297 BloXroute Max Profit View
13265045 7 3188 1892 +1296 Agnostic Gnosis View
13265952 1 3097 1802 +1295 Ultra Sound View
13265087 10 3231 1936 +1295 BloXroute Max Profit View
13264403 0 3081 1787 +1294 BloXroute Max Profit View
13265205 13 3273 1981 +1292 Agnostic Gnosis View
13263157 8 3198 1907 +1291 BloXroute Max Profit View
13261895 4 3138 1847 +1291 BloXroute Max Profit View
13265901 2 3107 1817 +1290 Ultra Sound View
13265849 4 3136 1847 +1289 Titan Relay View
13262033 8 3194 1907 +1287 BloXroute Max Profit View
13264984 8 3194 1907 +1287 Ultra Sound View
13260814 0 3074 1787 +1287 Aestus View
13265332 6 3162 1877 +1285 Ultra Sound View
13260937 5 3146 1862 +1284 BloXroute Max Profit View
13261140 0 3071 1787 +1284 Aestus View
13264859 5 3143 1862 +1281 Ultra Sound View
13265699 0 3067 1787 +1280 BloXroute Max Profit View
13263427 5 3141 1862 +1279 Ultra Sound View
13264079 1 3081 1802 +1279 Ultra Sound View
13265001 15 3290 2011 +1279 BloXroute Regulated View
13262475 9 3200 1921 +1279 Ultra Sound View
13260777 0 3063 1787 +1276 Titan Relay View
13265981 0 3062 1787 +1275 Ultra Sound View
13261287 2 3089 1817 +1272 Ultra Sound View
13260560 12 3237 1966 +1271 BloXroute Max Profit View
13262514 5 3131 1862 +1269 Ultra Sound View
13265099 3 3101 1832 +1269 Agnostic Gnosis View
13263688 13 3249 1981 +1268 BloXroute Max Profit View
13263194 0 3051 1787 +1264 BloXroute Max Profit View
13259296 8 3169 1907 +1262 Flashbots View
13265829 5 3124 1862 +1262 Ultra Sound View
13264373 5 3124 1862 +1262 Ultra Sound View
13264160 7 3152 1892 +1260 Agnostic Gnosis View
13259872 5 3121 1862 +1259 BloXroute Regulated View
13264416 0 3044 1787 +1257 Titan Relay View
13262098 0 3044 1787 +1257 Aestus View
13262078 8 3163 1907 +1256 Ultra Sound View
13264749 8 3163 1907 +1256 BloXroute Max Profit View
13265389 5 3118 1862 +1256 Ultra Sound View
13263077 6 3132 1877 +1255 Titan Relay View
13262071 3 3087 1832 +1255 Ultra Sound View
13262482 3 3087 1832 +1255 BloXroute Max Profit View
13265351 3 3087 1832 +1255 BloXroute Max Profit View
13264858 5 3115 1862 +1253 Ultra Sound View
13260362 4 3100 1847 +1253 BloXroute Max Profit View
13260938 0 3040 1787 +1253 Aestus View
13265498 5 3114 1862 +1252 BloXroute Max Profit View
13260497 4 3099 1847 +1252 Ultra Sound View
13262203 6 3127 1877 +1250 BloXroute Max Profit View
13262960 8 3156 1907 +1249 Titan Relay View
13262625 7 3141 1892 +1249 Ultra Sound View
13263619 3 3078 1832 +1246 BloXroute Max Profit View
13259509 0 3033 1787 +1246 BloXroute Max Profit View
13259387 1 3047 1802 +1245 Aestus View
13259008 3 3076 1832 +1244 Ultra Sound View
13265089 0 3031 1787 +1244 Flashbots View
13263626 10 3179 1936 +1243 BloXroute Regulated View
13261418 0 3029 1787 +1242 Ultra Sound View
13260050 8 3148 1907 +1241 Titan Relay View
13259756 6 3118 1877 +1241 Aestus View
13265903 8 3147 1907 +1240 Ultra Sound View
13259995 6 3117 1877 +1240 Titan Relay View
13260591 10 3176 1936 +1240 Local View
13259126 9 3161 1921 +1240 BloXroute Max Profit View
13262153 0 3023 1787 +1236 Aestus View
13260358 5 3097 1862 +1235 Ultra Sound View
13262470 4 3081 1847 +1234 Ultra Sound View
13262464 6 3110 1877 +1233 Ultra Sound View
13261061 5 3095 1862 +1233 Local View
13265379 1 3035 1802 +1233 Titan Relay View
Total anomalies: 223

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})