Thu, Dec 18, 2025

Propagation anomalies - 2025-12-18

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-18' AND slot_start_date_time < '2025-12-18'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-18' AND slot_start_date_time < '2025-12-18'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-18' AND slot_start_date_time < '2025-12-18'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-18' AND slot_start_date_time < '2025-12-18'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-18' AND slot_start_date_time < '2025-12-18'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-18' AND slot_start_date_time < '2025-12-18'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-18' AND slot_start_date_time < '2025-12-18'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-18' AND slot_start_date_time < '2025-12-18'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,171
MEV blocks: 6,606 (92.1%)
Local blocks: 565 (7.9%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1769.0 + 13.43 × blob_count (R² = 0.010)
Residual σ = 612.3ms
Anomalies (>2σ slow): 259 (3.6%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13270147 0 7264 1769 +5495 Local View
13266170 0 6536 1769 +4767 Local View
13271840 0 4904 1769 +3135 Local View
13273056 7 4816 1863 +2953 Local View
13270046 5 4723 1836 +2887 Local View
13272393 5 4359 1836 +2523 Local View
13271845 0 4167 1769 +2398 Local View
13270560 0 4110 1769 +2341 Local View
13273018 0 4058 1769 +2289 Local View
13269566 0 4012 1769 +2243 Local View
13272128 0 3904 1769 +2135 BloXroute Max Profit View
13266855 13 4055 1944 +2111 BloXroute Regulated View
13267192 8 3900 1876 +2024 Flashbots View
13267958 12 3926 1930 +1996 Local View
13270215 4 3795 1823 +1972 BloXroute Max Profit View
13266153 0 3636 1769 +1867 Local View
13269344 0 3618 1769 +1849 Ultra Sound View
13271502 1 3608 1782 +1826 Titan Relay View
13271378 3 3629 1809 +1820 Titan Relay View
13268690 12 3741 1930 +1811 BloXroute Regulated View
13270416 0 3577 1769 +1808 Titan Relay View
13267622 2 3598 1796 +1802 BloXroute Regulated View
13271201 13 3744 1944 +1800 BloXroute Regulated View
13266407 11 3712 1917 +1795 BloXroute Regulated View
13269966 0 3562 1769 +1793 Titan Relay View
13272484 4 3609 1823 +1786 Ultra Sound View
13272122 0 3555 1769 +1786 Flashbots View
13272608 3 3591 1809 +1782 Local View
13266263 1 3556 1782 +1774 Ultra Sound View
13268818 14 3729 1957 +1772 Ultra Sound View
13268352 5 3602 1836 +1766 Ultra Sound View
13270299 0 3508 1769 +1739 Ultra Sound View
13268909 5 3569 1836 +1733 Ultra Sound View
13272152 0 3482 1769 +1713 Local View
13270706 8 3582 1876 +1706 Ultra Sound View
13266355 8 3574 1876 +1698 Titan Relay View
13270908 0 3465 1769 +1696 Ultra Sound View
13266112 10 3598 1903 +1695 Ultra Sound View
13272983 8 3568 1876 +1692 Ultra Sound View
13271452 0 3456 1769 +1687 Local View
13272801 14 3632 1957 +1675 Titan Relay View
13267620 0 3428 1769 +1659 Ultra Sound View
13271575 12 3588 1930 +1658 Ultra Sound View
13271860 8 3533 1876 +1657 Ultra Sound View
13272882 5 3476 1836 +1640 Ultra Sound View
13270660 5 3475 1836 +1639 Ultra Sound View
13270367 11 3542 1917 +1625 Ultra Sound View
13267165 3 3420 1809 +1611 Ultra Sound View
13266528 15 3571 1970 +1601 Ultra Sound View
13268927 5 3436 1836 +1600 Ultra Sound View
13266121 8 3473 1876 +1597 Ultra Sound View
13268458 13 3522 1944 +1578 BloXroute Max Profit View
13270860 5 3412 1836 +1576 BloXroute Regulated View
13270741 1 3350 1782 +1568 Ultra Sound View
13266565 0 3333 1769 +1564 Agnostic Gnosis View
13269401 4 3386 1823 +1563 Ultra Sound View
13271978 10 3465 1903 +1562 Ultra Sound View
13271298 3 3360 1809 +1551 BloXroute Max Profit View
13266904 6 3397 1850 +1547 Ultra Sound View
13271288 0 3315 1769 +1546 Ultra Sound View
13269816 6 3391 1850 +1541 Titan Relay View
13271275 4 3360 1823 +1537 Ultra Sound View
13271648 11 3454 1917 +1537 Ultra Sound View
13271006 4 3357 1823 +1534 BloXroute Regulated View
13273135 9 3422 1890 +1532 Agnostic Gnosis View
13267066 0 3292 1769 +1523 Ultra Sound View
13272340 1 3298 1782 +1516 BloXroute Regulated View
13266129 0 3284 1769 +1515 Flashbots View
13270042 4 3337 1823 +1514 Titan Relay View
13272860 1 3284 1782 +1502 Ultra Sound View
13269678 1 3282 1782 +1500 Titan Relay View
13272276 9 3388 1890 +1498 Titan Relay View
13273143 1 3280 1782 +1498 BloXroute Regulated View
13266024 6 3347 1850 +1497 Titan Relay View
13267935 14 3445 1957 +1488 BloXroute Regulated View
13266038 3 3295 1809 +1486 Titan Relay View
13268037 12 3415 1930 +1485 Titan Relay View
13271282 5 3320 1836 +1484 BloXroute Regulated View
13266541 0 3245 1769 +1476 BloXroute Max Profit View
13271471 1 3255 1782 +1473 BloXroute Regulated View
13272863 7 3334 1863 +1471 Titan Relay View
13272491 5 3307 1836 +1471 Titan Relay View
13273009 5 3306 1836 +1470 BloXroute Regulated View
13271967 2 3257 1796 +1461 BloXroute Regulated View
13270021 0 3223 1769 +1454 Ultra Sound View
13270127 10 3353 1903 +1450 BloXroute Regulated View
13270573 4 3271 1823 +1448 BloXroute Max Profit View
13267776 8 3324 1876 +1448 Aestus View
13269479 6 3293 1850 +1443 Ultra Sound View
13273126 0 3205 1769 +1436 BloXroute Max Profit View
13270291 11 3352 1917 +1435 Flashbots View
13269710 0 3202 1769 +1433 Local View
13270713 12 3361 1930 +1431 Titan Relay View
13267164 14 3383 1957 +1426 Ultra Sound View
13271309 7 3287 1863 +1424 Flashbots View
13272576 4 3243 1823 +1420 BloXroute Regulated View
13270470 0 3189 1769 +1420 BloXroute Regulated View
13269472 10 3323 1903 +1420 Ultra Sound View
13270663 8 3295 1876 +1419 Ultra Sound View
13267743 7 3280 1863 +1417 Ultra Sound View
13273089 1 3199 1782 +1417 Ultra Sound View
13271005 13 3358 1944 +1414 BloXroute Max Profit View
13271867 1 3191 1782 +1409 Aestus View
13271572 8 3283 1876 +1407 BloXroute Regulated View
13268275 6 3251 1850 +1401 Ultra Sound View
13269819 13 3345 1944 +1401 Ultra Sound View
13271259 9 3288 1890 +1398 Ultra Sound View
13268046 0 3166 1769 +1397 BloXroute Max Profit View
13269792 12 3321 1930 +1391 Ultra Sound View
13272470 3 3199 1809 +1390 BloXroute Regulated View
13267297 8 3265 1876 +1389 Titan Relay View
13268174 7 3248 1863 +1385 BloXroute Regulated View
13271599 0 3153 1769 +1384 Ultra Sound View
13273001 11 3299 1917 +1382 Ultra Sound View
13266032 11 3298 1917 +1381 Titan Relay View
13271507 0 3150 1769 +1381 BloXroute Regulated View
13271318 0 3148 1769 +1379 Ultra Sound View
13271718 15 3348 1970 +1378 BloXroute Max Profit View
13269699 12 3307 1930 +1377 Titan Relay View
13269982 11 3293 1917 +1376 Titan Relay View
13268998 15 3344 1970 +1374 Titan Relay View
13267819 9 3260 1890 +1370 Ultra Sound View
13268918 3 3179 1809 +1370 BloXroute Max Profit View
13267881 14 3326 1957 +1369 BloXroute Max Profit View
13267305 15 3337 1970 +1367 Ultra Sound View
13267551 15 3333 1970 +1363 BloXroute Max Profit View
13272224 7 3225 1863 +1362 Titan Relay View
13270158 1 3143 1782 +1361 Titan Relay View
13268229 13 3303 1944 +1359 Agnostic Gnosis View
13270443 13 3301 1944 +1357 Ultra Sound View
13272515 0 3122 1769 +1353 BloXroute Max Profit View
13272784 7 3216 1863 +1353 Aestus View
13272331 0 3121 1769 +1352 Local View
13270591 4 3173 1823 +1350 Ultra Sound View
13269099 14 3307 1957 +1350 BloXroute Max Profit View
13272201 5 3186 1836 +1350 Ultra Sound View
13272053 14 3306 1957 +1349 BloXroute Regulated View
13272426 5 3185 1836 +1349 Aestus View
13269978 13 3292 1944 +1348 Ultra Sound View
13272004 14 3305 1957 +1348 EthGas View
13268629 13 3290 1944 +1346 Ultra Sound View
13267567 0 3115 1769 +1346 Aestus View
13270306 5 3181 1836 +1345 Aestus View
13269546 3 3151 1809 +1342 Flashbots View
13267428 0 3110 1769 +1341 Ultra Sound View
13269797 3 3150 1809 +1341 Ultra Sound View
13269136 1 3121 1782 +1339 BloXroute Regulated View
13267200 9 3225 1890 +1335 Flashbots View
13267346 3 3138 1809 +1329 Aestus View
13271869 0 3097 1769 +1328 Agnostic Gnosis View
13266383 5 3163 1836 +1327 Local View
13272938 8 3202 1876 +1326 BloXroute Max Profit View
13266067 15 3296 1970 +1326 Ultra Sound View
13266260 0 3093 1769 +1324 BloXroute Regulated View
13270670 8 3200 1876 +1324 Aestus View
13266366 14 3279 1957 +1322 Aestus View
13267503 9 3210 1890 +1320 Ultra Sound View
13270549 8 3194 1876 +1318 Ultra Sound View
13270597 6 3167 1850 +1317 EthGas View
13266454 3 3126 1809 +1317 BloXroute Max Profit View
13268150 5 3152 1836 +1316 Ultra Sound View
13271094 5 3152 1836 +1316 BloXroute Max Profit View
13268216 12 3246 1930 +1316 Ultra Sound View
13269026 11 3231 1917 +1314 BloXroute Max Profit View
13268562 14 3271 1957 +1314 BloXroute Max Profit View
13270013 12 3240 1930 +1310 Titan Relay View
13268304 6 3159 1850 +1309 Ultra Sound View
13271970 9 3199 1890 +1309 Titan Relay View
13269511 5 3145 1836 +1309 Ultra Sound View
13266643 5 3144 1836 +1308 BloXroute Regulated View
13266482 8 3184 1876 +1308 BloXroute Max Profit View
13269727 8 3184 1876 +1308 BloXroute Max Profit View
13268565 9 3197 1890 +1307 Ultra Sound View
13269250 0 3074 1769 +1305 BloXroute Regulated View
13267725 1 3087 1782 +1305 Agnostic Gnosis View
13269166 0 3071 1769 +1302 BloXroute Regulated View
13269359 0 3071 1769 +1302 Ultra Sound View
13268932 5 3135 1836 +1299 Ultra Sound View
13270551 0 3066 1769 +1297 BloXroute Max Profit View
13271520 9 3186 1890 +1296 Ultra Sound View
13271829 4 3117 1823 +1294 Flashbots View
13267493 5 3129 1836 +1293 Ultra Sound View
13267624 5 3129 1836 +1293 Aestus View
13271150 2 3087 1796 +1291 BloXroute Max Profit View
13272945 1 3072 1782 +1290 Ultra Sound View
13267602 5 3125 1836 +1289 BloXroute Regulated View
13268938 9 3178 1890 +1288 BloXroute Max Profit View
13271997 1 3070 1782 +1288 Ultra Sound View
13270436 2 3083 1796 +1287 BloXroute Max Profit View
13268026 5 3123 1836 +1287 Ultra Sound View
13272370 1 3069 1782 +1287 Ultra Sound View
13270083 4 3109 1823 +1286 BloXroute Max Profit View
13271179 13 3228 1944 +1284 BloXroute Regulated View
13270288 13 3228 1944 +1284 Ultra Sound View
13269772 1 3066 1782 +1284 Titan Relay View
13272871 8 3160 1876 +1284 BloXroute Max Profit View
13267906 4 3104 1823 +1281 Ultra Sound View
13271889 11 3195 1917 +1278 BloXroute Max Profit View
13269097 8 3154 1876 +1278 BloXroute Max Profit View
13271068 5 3113 1836 +1277 BloXroute Regulated View
13268912 5 3111 1836 +1275 Ultra Sound View
13267337 13 3218 1944 +1274 BloXroute Max Profit View
13268190 5 3110 1836 +1274 BloXroute Regulated View
13270026 1 3056 1782 +1274 Aestus View
13270596 1 3055 1782 +1273 BloXroute Max Profit View
13267494 0 3041 1769 +1272 Ultra Sound View
13268530 0 3040 1769 +1271 Aestus View
13270442 0 3040 1769 +1271 Flashbots View
13270173 7 3134 1863 +1271 BloXroute Max Profit View
13268279 12 3199 1930 +1269 Flashbots View
13270863 1 3051 1782 +1269 Ultra Sound View
13272922 5 3103 1836 +1267 Agnostic Gnosis View
13266350 2 3062 1796 +1266 Aestus View
13266087 7 3129 1863 +1266 Ultra Sound View
13272433 2 3060 1796 +1264 Ultra Sound View
13267639 3 3073 1809 +1264 Flashbots View
13267833 15 3233 1970 +1263 BloXroute Max Profit View
13267014 0 3029 1769 +1260 BloXroute Max Profit View
13268775 6 3109 1850 +1259 Agnostic Gnosis View
13266726 14 3216 1957 +1259 BloXroute Max Profit View
13271902 5 3094 1836 +1258 Ultra Sound View
13267249 5 3094 1836 +1258 BloXroute Max Profit View
13270114 0 3025 1769 +1256 Ultra Sound View
13273020 3 3065 1809 +1256 Agnostic Gnosis View
13267565 10 3159 1903 +1256 Ultra Sound View
13270224 5 3091 1836 +1255 Ultra Sound View
13267812 1 3035 1782 +1253 BloXroute Max Profit View
13268838 4 3075 1823 +1252 BloXroute Max Profit View
13270684 9 3142 1890 +1252 Ultra Sound View
13271527 0 3021 1769 +1252 Flashbots View
13268219 0 3021 1769 +1252 Titan Relay View
13267310 5 3088 1836 +1252 Flashbots View
13268930 5 3087 1836 +1251 Ultra Sound View
13272071 8 3127 1876 +1251 Titan Relay View
13271953 8 3127 1876 +1251 Ultra Sound View
13272325 7 3112 1863 +1249 BloXroute Max Profit View
13269148 7 3111 1863 +1248 Ultra Sound View
13272925 5 3084 1836 +1248 Agnostic Gnosis View
13272278 3 3057 1809 +1248 Titan Relay View
13271714 0 3015 1769 +1246 Agnostic Gnosis View
13269581 0 3015 1769 +1246 Titan Relay View
13267891 0 3014 1769 +1245 Aestus View
13270605 6 3094 1850 +1244 Ultra Sound View
13270969 4 3063 1823 +1240 Ultra Sound View
13268445 2 3036 1796 +1240 Ultra Sound View
13272194 5 3076 1836 +1240 BloXroute Max Profit View
13270107 0 3007 1769 +1238 Ultra Sound View
13272838 8 3113 1876 +1237 Titan Relay View
13270545 0 3004 1769 +1235 Agnostic Gnosis View
13268885 5 3071 1836 +1235 BloXroute Max Profit View
13271522 8 3111 1876 +1235 Agnostic Gnosis View
13272381 10 3137 1903 +1234 Ultra Sound View
13266741 9 3123 1890 +1233 Ultra Sound View
13272106 4 3054 1823 +1231 BloXroute Regulated View
13268800 6 3079 1850 +1229 Titan Relay View
13272490 1 3010 1782 +1228 Agnostic Gnosis View
13267990 8 3104 1876 +1228 BloXroute Max Profit View
13268660 0 2994 1769 +1225 BloXroute Max Profit View
13269948 10 3128 1903 +1225 Ultra Sound View
Total anomalies: 259

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})