Sat, Dec 20, 2025

Propagation anomalies - 2025-12-20

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-20' AND slot_start_date_time < '2025-12-20'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-20' AND slot_start_date_time < '2025-12-20'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-20' AND slot_start_date_time < '2025-12-20'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-20' AND slot_start_date_time < '2025-12-20'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-20' AND slot_start_date_time < '2025-12-20'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-20' AND slot_start_date_time < '2025-12-20'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-20' AND slot_start_date_time < '2025-12-20'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-20' AND slot_start_date_time < '2025-12-20'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,176
MEV blocks: 6,590 (91.8%)
Local blocks: 586 (8.2%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1729.2 + 24.57 × blob_count (R² = 0.018)
Residual σ = 641.5ms
Anomalies (>2σ slow): 202 (2.8%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13285760 0 21219 1729 +19490 Local View
13284108 0 7745 1729 +6016 Local View
13283674 0 4421 1729 +2692 Local View
13284736 0 4172 1729 +2443 Local View
13282464 0 3884 1729 +2155 BloXroute Regulated View
13281935 0 3854 1729 +2125 Local View
13281184 0 3851 1729 +2122 Local View
13281383 0 3754 1729 +2025 BloXroute Max Profit View
13286708 0 3630 1729 +1901 BloXroute Regulated View
13280865 10 3856 1975 +1881 Titan Relay View
13285917 5 3709 1852 +1857 Local View
13284518 1 3568 1754 +1814 Ultra Sound View
13287508 9 3764 1950 +1814 EthGas View
13284113 1 3556 1754 +1802 Ultra Sound View
13282250 3 3600 1803 +1797 BloXroute Max Profit View
13285627 1 3548 1754 +1794 BloXroute Regulated View
13283515 3 3596 1803 +1793 Titan Relay View
13286743 0 3520 1729 +1791 Ultra Sound View
13286645 0 3512 1729 +1783 Titan Relay View
13282627 0 3512 1729 +1783 Ultra Sound View
13287339 2 3542 1778 +1764 Titan Relay View
13283924 5 3609 1852 +1757 Titan Relay View
13281212 5 3601 1852 +1749 BloXroute Regulated View
13285358 6 3606 1877 +1729 Ultra Sound View
13287008 3 3512 1803 +1709 BloXroute Regulated View
13286272 8 3633 1926 +1707 Local View
13281756 3 3506 1803 +1703 BloXroute Regulated View
13285428 0 3426 1729 +1697 Ultra Sound View
13285911 3 3497 1803 +1694 Ultra Sound View
13286250 3 3491 1803 +1688 Flashbots View
13284825 0 3415 1729 +1686 Local View
13287065 6 3558 1877 +1681 Ultra Sound View
13285016 1 3404 1754 +1650 Ultra Sound View
13281170 8 3566 1926 +1640 Titan Relay View
13281927 6 3513 1877 +1636 Ultra Sound View
13286604 1 3369 1754 +1615 Ultra Sound View
13281453 6 3475 1877 +1598 Ultra Sound View
13287462 1 3350 1754 +1596 Ultra Sound View
13284599 6 3472 1877 +1595 Ultra Sound View
13281977 5 3438 1852 +1586 BloXroute Max Profit View
13287279 1 3332 1754 +1578 Ultra Sound View
13281078 1 3328 1754 +1574 Ultra Sound View
13282778 0 3294 1729 +1565 Ultra Sound View
13285658 10 3535 1975 +1560 Local View
13284882 0 3287 1729 +1558 Ultra Sound View
13287149 5 3400 1852 +1548 Ultra Sound View
13280915 0 3276 1729 +1547 Ultra Sound View
13287098 6 3423 1877 +1546 Agnostic Gnosis View
13283585 3 3348 1803 +1545 BloXroute Regulated View
13282976 5 3388 1852 +1536 Ultra Sound View
13281371 3 3338 1803 +1535 Titan Relay View
13284256 0 3262 1729 +1533 Flashbots View
13282592 3 3330 1803 +1527 BloXroute Max Profit View
13283492 0 3256 1729 +1527 BloXroute Regulated View
13287537 2 3304 1778 +1526 BloXroute Regulated View
13281503 0 3251 1729 +1522 BloXroute Regulated View
13281926 1 3271 1754 +1517 BloXroute Regulated View
13281925 7 3415 1901 +1514 Ultra Sound View
13281382 5 3363 1852 +1511 Titan Relay View
13285584 4 3329 1827 +1502 Ultra Sound View
13286849 0 3229 1729 +1500 Agnostic Gnosis View
13284254 6 3375 1877 +1498 BloXroute Regulated View
13281539 0 3220 1729 +1491 Ultra Sound View
13287203 0 3216 1729 +1487 BloXroute Regulated View
13285600 1 3231 1754 +1477 Ultra Sound View
13282014 5 3327 1852 +1475 BloXroute Max Profit View
13286903 1 3228 1754 +1474 BloXroute Regulated View
13281426 6 3350 1877 +1473 Titan Relay View
13285872 0 3199 1729 +1470 BloXroute Regulated View
13285662 1 3221 1754 +1467 Titan Relay View
13284605 0 3180 1729 +1451 Agnostic Gnosis View
13287162 1 3203 1754 +1449 Titan Relay View
13280616 0 3175 1729 +1446 Aestus View
13282238 0 3175 1729 +1446 Titan Relay View
13280911 0 3168 1729 +1439 EthGas View
13283425 1 3184 1754 +1430 Ultra Sound View
13287325 6 3301 1877 +1424 Ultra Sound View
13280435 0 3150 1729 +1421 Titan Relay View
13286175 5 3268 1852 +1416 BloXroute Regulated View
13284761 6 3289 1877 +1412 Agnostic Gnosis View
13282801 13 3458 2049 +1409 BloXroute Regulated View
13284461 3 3211 1803 +1408 BloXroute Max Profit View
13282035 7 3309 1901 +1408 BloXroute Regulated View
13282960 7 3308 1901 +1407 Ultra Sound View
13280471 8 3332 1926 +1406 BloXroute Regulated View
13282087 0 3133 1729 +1404 BloXroute Regulated View
13280904 5 3255 1852 +1403 BloXroute Regulated View
13286449 2 3180 1778 +1402 EthGas View
13285219 11 3396 1999 +1397 Ultra Sound View
13282544 1 3150 1754 +1396 Titan Relay View
13282392 6 3269 1877 +1392 Flashbots View
13281719 3 3194 1803 +1391 Ultra Sound View
13283637 11 3383 1999 +1384 BloXroute Regulated View
13281246 8 3307 1926 +1381 BloXroute Regulated View
13284219 10 3354 1975 +1379 Ultra Sound View
13281694 3 3179 1803 +1376 Local View
13282272 8 3301 1926 +1375 Ultra Sound View
13282651 3 3178 1803 +1375 Ultra Sound View
13285606 3 3173 1803 +1370 Flashbots View
13287271 8 3295 1926 +1369 Flashbots View
13283724 1 3120 1754 +1366 BloXroute Max Profit View
13283684 7 3266 1901 +1365 Titan Relay View
13282451 9 3313 1950 +1363 BloXroute Max Profit View
13281934 5 3214 1852 +1362 BloXroute Regulated View
13282330 0 3090 1729 +1361 Titan Relay View
13285624 4 3188 1827 +1361 BloXroute Max Profit View
13287140 0 3086 1729 +1357 Ultra Sound View
13281218 0 3086 1729 +1357 Ultra Sound View
13281504 0 3085 1729 +1356 Titan Relay View
13282086 5 3207 1852 +1355 Agnostic Gnosis View
13284349 0 3084 1729 +1355 BloXroute Regulated View
13283154 0 3083 1729 +1354 Ultra Sound View
13285047 9 3303 1950 +1353 Titan Relay View
13282236 5 3203 1852 +1351 Agnostic Gnosis View
13286574 7 3252 1901 +1351 BloXroute Max Profit View
13285225 0 3077 1729 +1348 BloXroute Max Profit View
13280427 2 3125 1778 +1347 Aestus View
13284873 6 3223 1877 +1346 Ultra Sound View
13283479 0 3074 1729 +1345 BloXroute Max Profit View
13280787 1 3098 1754 +1344 Ultra Sound View
13286698 5 3196 1852 +1344 Flashbots View
13286907 5 3196 1852 +1344 Agnostic Gnosis View
13287472 6 3220 1877 +1343 BloXroute Max Profit View
13287153 3 3145 1803 +1342 Aestus View
13281916 12 3366 2024 +1342 BloXroute Regulated View
13287253 0 3071 1729 +1342 BloXroute Max Profit View
13284702 5 3193 1852 +1341 Ultra Sound View
13286723 3 3143 1803 +1340 Ultra Sound View
13282494 5 3192 1852 +1340 Ultra Sound View
13281301 3 3142 1803 +1339 Ultra Sound View
13282274 0 3068 1729 +1339 BloXroute Max Profit View
13286824 1 3091 1754 +1337 BloXroute Max Profit View
13284213 10 3312 1975 +1337 BloXroute Max Profit View
13283838 0 3066 1729 +1337 BloXroute Regulated View
13282031 0 3065 1729 +1336 Ultra Sound View
13283174 0 3064 1729 +1335 Aestus View
13280937 1 3088 1754 +1334 Agnostic Gnosis View
13281655 5 3186 1852 +1334 Ultra Sound View
13283653 1 3086 1754 +1332 Ultra Sound View
13286949 5 3184 1852 +1332 Titan Relay View
13285741 6 3207 1877 +1330 BloXroute Max Profit View
13280744 5 3182 1852 +1330 Titan Relay View
13285466 3 3131 1803 +1328 BloXroute Max Profit View
13287036 5 3179 1852 +1327 BloXroute Max Profit View
13286007 9 3277 1950 +1327 Ultra Sound View
13283256 1 3080 1754 +1326 BloXroute Max Profit View
13281815 3 3129 1803 +1326 BloXroute Max Profit View
13285559 0 3055 1729 +1326 BloXroute Max Profit View
13285468 6 3201 1877 +1324 BloXroute Max Profit View
13286853 1 3078 1754 +1324 Ultra Sound View
13280631 7 3225 1901 +1324 Ultra Sound View
13285861 0 3052 1729 +1323 BloXroute Regulated View
13284914 6 3198 1877 +1321 BloXroute Max Profit View
13285897 0 3050 1729 +1321 BloXroute Max Profit View
13285008 0 3049 1729 +1320 Ultra Sound View
13285091 0 3048 1729 +1319 Titan Relay View
13285839 10 3293 1975 +1318 BloXroute Max Profit View
13280458 5 3170 1852 +1318 BloXroute Max Profit View
13283314 1 3071 1754 +1317 Ultra Sound View
13283966 7 3216 1901 +1315 BloXroute Max Profit View
13283755 3 3117 1803 +1314 BloXroute Max Profit View
13282216 5 3166 1852 +1314 Ultra Sound View
13281937 9 3264 1950 +1314 BloXroute Max Profit View
13286143 6 3189 1877 +1312 BloXroute Max Profit View
13285425 8 3233 1926 +1307 Ultra Sound View
13281442 3 3110 1803 +1307 BloXroute Regulated View
13285767 5 3158 1852 +1306 BloXroute Max Profit View
13283728 0 3035 1729 +1306 Agnostic Gnosis View
13283545 2 3083 1778 +1305 Agnostic Gnosis View
13287536 8 3230 1926 +1304 BloXroute Max Profit View
13283632 5 3156 1852 +1304 Ultra Sound View
13280760 4 3131 1827 +1304 Ultra Sound View
13281583 6 3179 1877 +1302 BloXroute Max Profit View
13280748 3 3105 1803 +1302 BloXroute Max Profit View
13287479 0 3031 1729 +1302 BloXroute Max Profit View
13287567 2 3080 1778 +1302 Ultra Sound View
13285339 2 3080 1778 +1302 Ultra Sound View
13282763 0 3030 1729 +1301 Ultra Sound View
13283648 1 3053 1754 +1299 Agnostic Gnosis View
13280741 3 3102 1803 +1299 Titan Relay View
13283378 0 3028 1729 +1299 BloXroute Max Profit View
13287222 8 3224 1926 +1298 Flashbots View
13283388 5 3150 1852 +1298 BloXroute Max Profit View
13282266 0 3026 1729 +1297 BloXroute Max Profit View
13285865 5 3148 1852 +1296 Ultra Sound View
13286059 3 3098 1803 +1295 Flashbots View
13281420 0 3024 1729 +1295 Agnostic Gnosis View
13283309 5 3146 1852 +1294 Ultra Sound View
13285255 5 3146 1852 +1294 Ultra Sound View
13282613 0 3023 1729 +1294 Flashbots View
13281746 4 3121 1827 +1294 Ultra Sound View
13286810 0 3019 1729 +1290 BloXroute Regulated View
13285946 0 3019 1729 +1290 Titan Relay View
13283294 8 3215 1926 +1289 BloXroute Max Profit View
13284892 5 3141 1852 +1289 BloXroute Regulated View
13282193 8 3214 1926 +1288 Agnostic Gnosis View
13283095 9 3238 1950 +1288 Ultra Sound View
13285934 5 3139 1852 +1287 BloXroute Regulated View
13284506 3 3089 1803 +1286 Aestus View
13282412 3 3089 1803 +1286 BloXroute Max Profit View
13284512 0 3015 1729 +1286 Agnostic Gnosis View
13284828 11 3284 1999 +1285 BloXroute Max Profit View
Total anomalies: 202

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})