Sun, Dec 21, 2025

Propagation anomalies - 2025-12-21

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-21' AND slot_start_date_time < '2025-12-21'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-21' AND slot_start_date_time < '2025-12-21'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-21' AND slot_start_date_time < '2025-12-21'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-21' AND slot_start_date_time < '2025-12-21'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-21' AND slot_start_date_time < '2025-12-21'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-21' AND slot_start_date_time < '2025-12-21'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-21' AND slot_start_date_time < '2025-12-21'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-21' AND slot_start_date_time < '2025-12-21'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,180
MEV blocks: 6,600 (91.9%)
Local blocks: 580 (8.1%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1734.4 + 21.11 × blob_count (R² = 0.015)
Residual σ = 619.6ms
Anomalies (>2σ slow): 257 (3.6%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13288487 0 14224 1734 +12490 Local View
13293408 6 5107 1861 +3246 Local View
13293409 0 4651 1734 +2917 Local View
13289507 0 4479 1734 +2745 Local View
13290328 6 4031 1861 +2170 Local View
13289506 1 3921 1755 +2166 BloXroute Regulated View
13289155 0 3836 1734 +2102 Aestus View
13290469 0 3631 1734 +1897 BloXroute Regulated View
13292690 1 3603 1755 +1848 Ultra Sound View
13290236 0 3571 1734 +1837 BloXroute Regulated View
13291946 0 3569 1734 +1835 Ultra Sound View
13288781 1 3585 1755 +1830 Agnostic Gnosis View
13289859 1 3581 1755 +1826 Ultra Sound View
13287969 10 3751 1945 +1806 BloXroute Max Profit View
13289824 6 3663 1861 +1802 BloXroute Max Profit View
13288353 0 3529 1734 +1795 Local View
13293266 5 3634 1840 +1794 Titan Relay View
13289696 0 3514 1734 +1780 Ultra Sound View
13289320 1 3534 1755 +1779 BloXroute Regulated View
13291696 6 3628 1861 +1767 Ultra Sound View
13294251 4 3567 1819 +1748 Ultra Sound View
13291064 7 3622 1882 +1740 Titan Relay View
13288029 6 3594 1861 +1733 BloXroute Regulated View
13289640 0 3462 1734 +1728 Ultra Sound View
13291738 8 3625 1903 +1722 Ultra Sound View
13294087 9 3637 1924 +1713 BloXroute Regulated View
13293921 8 3607 1903 +1704 Ultra Sound View
13288366 7 3585 1882 +1703 BloXroute Regulated View
13292400 6 3559 1861 +1698 Ultra Sound View
13290182 0 3424 1734 +1690 Ultra Sound View
13289773 0 3421 1734 +1687 Titan Relay View
13290494 1 3417 1755 +1662 Flashbots View
13293203 6 3513 1861 +1652 Agnostic Gnosis View
13293436 0 3385 1734 +1651 Ultra Sound View
13290737 8 3533 1903 +1630 Titan Relay View
13291772 1 3384 1755 +1629 Titan Relay View
13290780 8 3520 1903 +1617 BloXroute Regulated View
13288060 0 3339 1734 +1605 Ultra Sound View
13292201 8 3500 1903 +1597 Ultra Sound View
13290747 3 3394 1798 +1596 Local View
13292301 2 3370 1777 +1593 Ultra Sound View
13290461 1 3346 1755 +1591 BloXroute Max Profit View
13291778 11 3553 1967 +1586 Agnostic Gnosis View
13289455 0 3316 1734 +1582 Ultra Sound View
13289495 9 3489 1924 +1565 Ultra Sound View
13289403 1 3310 1755 +1555 BloXroute Regulated View
13293138 0 3277 1734 +1543 Ultra Sound View
13292794 1 3295 1755 +1540 BloXroute Regulated View
13291362 4 3354 1819 +1535 Local View
13289879 0 3266 1734 +1532 Titan Relay View
13293377 5 3365 1840 +1525 Ultra Sound View
13292479 4 3339 1819 +1520 Titan Relay View
13289472 8 3423 1903 +1520 BloXroute Regulated View
13288309 4 3329 1819 +1510 Titan Relay View
13290079 5 3343 1840 +1503 Titan Relay View
13291919 0 3236 1734 +1502 BloXroute Regulated View
13289893 2 3272 1777 +1495 Titan Relay View
13290428 8 3396 1903 +1493 Titan Relay View
13289416 5 3320 1840 +1480 Titan Relay View
13292687 5 3319 1840 +1479 Titan Relay View
13292622 6 3338 1861 +1477 Flashbots View
13294195 11 3437 1967 +1470 Ultra Sound View
13289411 3 3266 1798 +1468 Titan Relay View
13289972 0 3194 1734 +1460 BloXroute Regulated View
13289586 3 3252 1798 +1454 Ultra Sound View
13287765 4 3271 1819 +1452 BloXroute Regulated View
13293881 4 3269 1819 +1450 Titan Relay View
13293966 7 3332 1882 +1450 BloXroute Regulated View
13293052 3 3247 1798 +1449 Titan Relay View
13292633 8 3350 1903 +1447 BloXroute Regulated View
13288999 5 3285 1840 +1445 Ultra Sound View
13291814 6 3299 1861 +1438 BloXroute Regulated View
13287725 8 3335 1903 +1432 Titan Relay View
13290908 0 3165 1734 +1431 Ultra Sound View
13287886 4 3248 1819 +1429 BloXroute Regulated View
13290354 1 3183 1755 +1428 BloXroute Max Profit View
13287989 3 3225 1798 +1427 Local View
13293670 5 3264 1840 +1424 BloXroute Max Profit View
13290893 6 3285 1861 +1424 Flashbots View
13293575 0 3156 1734 +1422 Ultra Sound View
13294001 11 3382 1967 +1415 BloXroute Regulated View
13287769 4 3232 1819 +1413 Ultra Sound View
13287772 2 3187 1777 +1410 BloXroute Regulated View
13290848 13 3418 2009 +1409 BloXroute Max Profit View
13290517 11 3373 1967 +1406 Titan Relay View
13288854 5 3243 1840 +1403 Ultra Sound View
13290817 9 3327 1924 +1403 Titan Relay View
13291540 6 3262 1861 +1401 Titan Relay View
13294272 8 3301 1903 +1398 Ultra Sound View
13292554 5 3236 1840 +1396 Ultra Sound View
13293310 3 3192 1798 +1394 BloXroute Max Profit View
13292866 3 3190 1798 +1392 Titan Relay View
13293459 5 3231 1840 +1391 Agnostic Gnosis View
13288345 9 3313 1924 +1389 BloXroute Regulated View
13293499 5 3228 1840 +1388 Ultra Sound View
13288082 3 3182 1798 +1384 Agnostic Gnosis View
13288419 7 3266 1882 +1384 BloXroute Regulated View
13293628 8 3287 1903 +1384 Ultra Sound View
13292708 0 3118 1734 +1384 BloXroute Max Profit View
13289252 8 3285 1903 +1382 Ultra Sound View
13294016 5 3221 1840 +1381 Ultra Sound View
13293598 0 3115 1734 +1381 BloXroute Max Profit View
13291903 5 3219 1840 +1379 Agnostic Gnosis View
13293683 1 3133 1755 +1378 Agnostic Gnosis View
13290735 9 3300 1924 +1376 Ultra Sound View
13292544 2 3152 1777 +1375 Titan Relay View
13290077 4 3193 1819 +1374 Ultra Sound View
13294396 5 3214 1840 +1374 Ultra Sound View
13294235 5 3213 1840 +1373 BloXroute Regulated View
13294132 0 3107 1734 +1373 Ultra Sound View
13291906 3 3170 1798 +1372 Ultra Sound View
13293824 5 3212 1840 +1372 BloXroute Max Profit View
13290642 1 3127 1755 +1372 Aestus View
13291733 0 3099 1734 +1365 BloXroute Regulated View
13291565 6 3223 1861 +1362 Agnostic Gnosis View
13294752 8 3262 1903 +1359 BloXroute Max Profit View
13289429 5 3198 1840 +1358 Titan Relay View
13293082 5 3198 1840 +1358 BloXroute Max Profit View
13289134 0 3091 1734 +1357 Ultra Sound View
13290945 12 3343 1988 +1355 Ultra Sound View
13293109 13 3363 2009 +1354 Flashbots View
13294103 0 3088 1734 +1354 BloXroute Max Profit View
13290827 11 3320 1967 +1353 Flashbots View
13292483 11 3320 1967 +1353 Flashbots View
13293708 0 3087 1734 +1353 BloXroute Max Profit View
13294612 1 3106 1755 +1351 Aestus View
13290348 4 3169 1819 +1350 BloXroute Regulated View
13293589 8 3253 1903 +1350 Local View
13294576 5 3188 1840 +1348 Agnostic Gnosis View
13292882 2 3124 1777 +1347 BloXroute Regulated View
13292422 3 3145 1798 +1347 Ultra Sound View
13292695 0 3080 1734 +1346 Titan Relay View
13288808 6 3206 1861 +1345 Ultra Sound View
13293228 0 3079 1734 +1345 BloXroute Regulated View
13290788 0 3079 1734 +1345 Titan Relay View
13294634 0 3078 1734 +1344 Ultra Sound View
13294326 1 3099 1755 +1344 Ultra Sound View
13288719 4 3162 1819 +1343 BloXroute Max Profit View
13292535 5 3183 1840 +1343 Ultra Sound View
13294579 4 3161 1819 +1342 Ultra Sound View
13293126 5 3182 1840 +1342 Agnostic Gnosis View
13289080 1 3097 1755 +1342 Ultra Sound View
13292552 0 3075 1734 +1341 Flashbots View
13293688 1 3096 1755 +1341 BloXroute Regulated View
13290368 3 3138 1798 +1340 BloXroute Max Profit View
13292879 1 3094 1755 +1339 BloXroute Regulated View
13291274 11 3305 1967 +1338 Ultra Sound View
13288350 5 3176 1840 +1336 BloXroute Max Profit View
13287869 0 3070 1734 +1336 Ultra Sound View
13291888 0 3070 1734 +1336 BloXroute Max Profit View
13288282 13 3343 2009 +1334 BloXroute Regulated View
13293827 0 3067 1734 +1333 Aestus View
13291974 11 3299 1967 +1332 Ultra Sound View
13289654 0 3066 1734 +1332 Ultra Sound View
13288799 7 3213 1882 +1331 Flashbots View
13293005 9 3253 1924 +1329 BloXroute Regulated View
13289820 5 3167 1840 +1327 Aestus View
13289936 1 3081 1755 +1326 Ultra Sound View
13289977 6 3185 1861 +1324 Ultra Sound View
13289394 10 3269 1945 +1324 BloXroute Max Profit View
13292443 4 3141 1819 +1322 BloXroute Max Profit View
13288511 10 3267 1945 +1322 BloXroute Regulated View
13292885 5 3161 1840 +1321 Ultra Sound View
13290519 8 3224 1903 +1321 BloXroute Max Profit View
13290971 0 3055 1734 +1321 Ultra Sound View
13290751 3 3118 1798 +1320 BloXroute Max Profit View
13288079 9 3243 1924 +1319 Ultra Sound View
13291106 0 3052 1734 +1318 Flashbots View
13290804 1 3072 1755 +1317 BloXroute Max Profit View
13293944 3 3114 1798 +1316 Ultra Sound View
13293394 6 3176 1861 +1315 Ultra Sound View
13293784 1 3070 1755 +1315 BloXroute Regulated View
13288525 8 3217 1903 +1314 Ultra Sound View
13290062 0 3047 1734 +1313 Ultra Sound View
13288955 0 3047 1734 +1313 BloXroute Max Profit View
13288482 0 3046 1734 +1312 Titan Relay View
13289130 0 3046 1734 +1312 Ultra Sound View
13291484 0 3045 1734 +1311 BloXroute Max Profit View
13291090 9 3234 1924 +1310 BloXroute Max Profit View
13289674 0 3043 1734 +1309 BloXroute Max Profit View
13288749 1 3064 1755 +1309 BloXroute Regulated View
13287797 0 3041 1734 +1307 BloXroute Max Profit View
13293212 9 3231 1924 +1307 BloXroute Max Profit View
13294654 1 3062 1755 +1307 Flashbots View
13292171 8 3209 1903 +1306 Ultra Sound View
13288317 4 3124 1819 +1305 Ultra Sound View
13293254 0 3039 1734 +1305 BloXroute Max Profit View
13290457 8 3206 1903 +1303 Ultra Sound View
13293166 8 3206 1903 +1303 BloXroute Regulated View
13294609 3 3099 1798 +1301 BloXroute Max Profit View
13294708 5 3141 1840 +1301 BloXroute Max Profit View
13289020 5 3141 1840 +1301 BloXroute Max Profit View
13293895 0 3034 1734 +1300 BloXroute Regulated View
13292337 9 3224 1924 +1300 BloXroute Max Profit View
13293678 1 3055 1755 +1300 BloXroute Max Profit View
13288208 0 3033 1734 +1299 Titan Relay View
13294302 0 3033 1734 +1299 Ultra Sound View
13292253 2 3075 1777 +1298 BloXroute Regulated View
13294077 2 3075 1777 +1298 BloXroute Max Profit View
13291806 5 3138 1840 +1298 Aestus View
13293353 6 3159 1861 +1298 BloXroute Max Profit View
13287707 8 3201 1903 +1298 Ultra Sound View
13294776 0 3032 1734 +1298 Flashbots View
13290778 0 3032 1734 +1298 BloXroute Max Profit View
13291180 0 3028 1734 +1294 BloXroute Max Profit View
13294054 2 3070 1777 +1293 Ultra Sound View
13290476 0 3027 1734 +1293 BloXroute Max Profit View
13290296 9 3217 1924 +1293 BloXroute Regulated View
13293122 5 3131 1840 +1291 BloXroute Max Profit View
13291240 1 3046 1755 +1291 Flashbots View
13289996 5 3130 1840 +1290 Aestus View
13290343 1 3044 1755 +1289 BloXroute Max Profit View
13290886 11 3255 1967 +1288 Ultra Sound View
13294555 0 3016 1734 +1282 Agnostic Gnosis View
13290744 1 3037 1755 +1282 BloXroute Max Profit View
13287860 5 3120 1840 +1280 BloXroute Max Profit View
13290304 4 3098 1819 +1279 Ultra Sound View
13289987 3 3076 1798 +1278 Titan Relay View
13291830 14 3307 2030 +1277 Ultra Sound View
13288184 5 3116 1840 +1276 BloXroute Max Profit View
13293281 0 3010 1734 +1276 BloXroute Max Profit View
13289712 11 3242 1967 +1275 BloXroute Max Profit View
13292389 4 3092 1819 +1273 Flashbots View
13294191 0 3006 1734 +1272 Flashbots View
13287663 8 3173 1903 +1270 BloXroute Max Profit View
13289376 0 3004 1734 +1270 Flashbots View
13289673 3 3067 1798 +1269 BloXroute Max Profit View
13294172 0 3003 1734 +1269 BloXroute Max Profit View
13288267 0 3003 1734 +1269 Titan Relay View
13290418 0 3003 1734 +1269 Ultra Sound View
13292197 0 3000 1734 +1266 Aestus View
13293734 0 2999 1734 +1265 BloXroute Max Profit View
13291465 0 2999 1734 +1265 BloXroute Max Profit View
13288113 0 2998 1734 +1264 BloXroute Max Profit View
13293786 5 3102 1840 +1262 Ultra Sound View
13288105 0 2996 1734 +1262 Titan Relay View
13293970 2 3037 1777 +1260 Ultra Sound View
13291767 4 3079 1819 +1260 Agnostic Gnosis View
13291286 3 3057 1798 +1259 Ultra Sound View
13287794 3 3057 1798 +1259 Aestus View
13288950 6 3119 1861 +1258 BloXroute Regulated View
13291925 5 3097 1840 +1257 Ultra Sound View
13294083 7 3135 1882 +1253 BloXroute Max Profit View
13293928 0 2983 1734 +1249 Ultra Sound View
13291640 8 3150 1903 +1247 Ultra Sound View
13293080 5 3086 1840 +1246 Ultra Sound View
13294693 3 3043 1798 +1245 Flashbots View
13287740 10 3190 1945 +1245 BloXroute Max Profit View
13291004 5 3083 1840 +1243 Ultra Sound View
13294287 2 3019 1777 +1242 Titan Relay View
13288134 4 3061 1819 +1242 Ultra Sound View
13293847 6 3103 1861 +1242 BloXroute Max Profit View
13289807 8 3144 1903 +1241 BloXroute Max Profit View
13289077 0 2975 1734 +1241 Ultra Sound View
13290284 0 2975 1734 +1241 BloXroute Max Profit View
13291206 8 3143 1903 +1240 Ultra Sound View
13294063 0 2974 1734 +1240 Ultra Sound View
Total anomalies: 257

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})