Tue, Dec 23, 2025

Propagation anomalies - 2025-12-23

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-23' AND slot_start_date_time < '2025-12-23'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-23' AND slot_start_date_time < '2025-12-23'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-23' AND slot_start_date_time < '2025-12-23'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-23' AND slot_start_date_time < '2025-12-23'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-23' AND slot_start_date_time < '2025-12-23'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-23' AND slot_start_date_time < '2025-12-23'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-23' AND slot_start_date_time < '2025-12-23'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-23' AND slot_start_date_time < '2025-12-23'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,171
MEV blocks: 6,653 (92.8%)
Local blocks: 518 (7.2%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1760.7 + 22.36 × blob_count (R² = 0.018)
Residual σ = 642.9ms
Anomalies (>2σ slow): 210 (2.9%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13307318 6 11998 1895 +10103 Local View
13306209 0 10866 1761 +9105 Local View
13307522 0 9237 1761 +7476 Local View
13308790 0 8907 1761 +7146 Local View
13304646 6 7911 1895 +6016 Local View
13307134 0 6236 1761 +4475 Local View
13309120 0 4620 1761 +2859 Local View
13307871 3 4581 1828 +2753 Titan Relay View
13304000 0 4331 1761 +2570 Local View
13306176 5 4304 1873 +2431 Local View
13304480 0 4166 1761 +2405 Local View
13302080 0 4123 1761 +2362 Local View
13302209 5 4222 1873 +2349 Local View
13305984 0 3953 1761 +2192 Local View
13303584 6 3943 1895 +2048 Local View
13302432 5 3901 1873 +2028 Flashbots View
13304238 3 3714 1828 +1886 Titan Relay View
13303460 1 3650 1783 +1867 Titan Relay View
13302567 5 3716 1873 +1843 BloXroute Regulated View
13306487 5 3693 1873 +1820 Titan Relay View
13304398 4 3659 1850 +1809 Ultra Sound View
13308169 3 3636 1828 +1808 Ultra Sound View
13305442 3 3635 1828 +1807 BloXroute Regulated View
13305965 1 3588 1783 +1805 Ultra Sound View
13304904 6 3676 1895 +1781 Flashbots View
13304032 0 3540 1761 +1779 Local View
13307947 6 3651 1895 +1756 Ultra Sound View
13307579 0 3514 1761 +1753 Agnostic Gnosis View
13306783 4 3602 1850 +1752 Ultra Sound View
13307836 14 3820 2074 +1746 Ultra Sound View
13307445 6 3639 1895 +1744 BloXroute Regulated View
13303515 5 3616 1873 +1743 Titan Relay View
13307247 5 3586 1873 +1713 Ultra Sound View
13303266 8 3638 1940 +1698 BloXroute Regulated View
13307918 8 3635 1940 +1695 BloXroute Regulated View
13303146 5 3561 1873 +1688 Ultra Sound View
13303818 0 3448 1761 +1687 Ultra Sound View
13307138 8 3620 1940 +1680 Local View
13307217 10 3635 1984 +1651 Ultra Sound View
13303702 0 3406 1761 +1645 Ultra Sound View
13303889 0 3400 1761 +1639 BloXroute Regulated View
13307823 12 3666 2029 +1637 BloXroute Regulated View
13309066 0 3396 1761 +1635 Ultra Sound View
13303020 6 3528 1895 +1633 Ultra Sound View
13303890 13 3663 2051 +1612 Ultra Sound View
13303845 1 3393 1783 +1610 BloXroute Regulated View
13306227 4 3452 1850 +1602 Aestus View
13307429 5 3473 1873 +1600 Ultra Sound View
13308005 0 3357 1761 +1596 Titan Relay View
13307798 9 3556 1962 +1594 Ultra Sound View
13306040 9 3547 1962 +1585 BloXroute Regulated View
13307890 5 3456 1873 +1583 BloXroute Regulated View
13309165 13 3633 2051 +1582 Ultra Sound View
13307649 13 3627 2051 +1576 Titan Relay View
13302944 5 3417 1873 +1544 Ultra Sound View
13304863 5 3416 1873 +1543 Titan Relay View
13305190 0 3303 1761 +1542 Ultra Sound View
13308800 8 3480 1940 +1540 Ultra Sound View
13302036 3 3366 1828 +1538 BloXroute Regulated View
13305355 5 3407 1873 +1534 BloXroute Regulated View
13306347 2 3339 1805 +1534 Titan Relay View
13308761 0 3294 1761 +1533 Titan Relay View
13308651 5 3401 1873 +1528 Titan Relay View
13308508 11 3534 2007 +1527 Ultra Sound View
13302828 5 3398 1873 +1525 BloXroute Regulated View
13303520 2 3329 1805 +1524 BloXroute Regulated View
13308415 1 3304 1783 +1521 BloXroute Regulated View
13304984 11 3527 2007 +1520 Ultra Sound View
13304089 0 3279 1761 +1518 Ultra Sound View
13307373 5 3390 1873 +1517 BloXroute Max Profit View
13304209 5 3387 1873 +1514 Titan Relay View
13308335 8 3452 1940 +1512 Ultra Sound View
13302016 3 3328 1828 +1500 Flashbots View
13308455 0 3257 1761 +1496 BloXroute Regulated View
13303612 5 3368 1873 +1495 Titan Relay View
13306846 0 3256 1761 +1495 Agnostic Gnosis View
13304399 5 3366 1873 +1493 Ultra Sound View
13306270 6 3386 1895 +1491 Titan Relay View
13305918 5 3360 1873 +1487 Titan Relay View
13302241 3 3315 1828 +1487 BloXroute Regulated View
13304545 4 3336 1850 +1486 Titan Relay View
13304473 1 3264 1783 +1481 Ultra Sound View
13304406 5 3351 1873 +1478 EthGas View
13305301 6 3372 1895 +1477 BloXroute Regulated View
13306240 4 3324 1850 +1474 Ultra Sound View
13305826 0 3231 1761 +1470 Ultra Sound View
13306833 0 3222 1761 +1461 Ultra Sound View
13303448 0 3221 1761 +1460 Aestus View
13305817 6 3352 1895 +1457 Titan Relay View
13308951 2 3262 1805 +1457 Ultra Sound View
13305574 3 3284 1828 +1456 Ultra Sound View
13306127 8 3395 1940 +1455 BloXroute Regulated View
13308244 0 3216 1761 +1455 BloXroute Regulated View
13306419 5 3327 1873 +1454 Titan Relay View
13306922 2 3249 1805 +1444 BloXroute Regulated View
13306615 0 3204 1761 +1443 Titan Relay View
13304305 14 3512 2074 +1438 Ultra Sound View
13305575 0 3198 1761 +1437 BloXroute Regulated View
13305385 6 3330 1895 +1435 BloXroute Regulated View
13303576 5 3306 1873 +1433 Titan Relay View
13307889 2 3238 1805 +1433 BloXroute Max Profit View
13305816 6 3325 1895 +1430 BloXroute Regulated View
13304628 0 3187 1761 +1426 BloXroute Max Profit View
13302512 5 3298 1873 +1425 BloXroute Regulated View
13305722 8 3365 1940 +1425 Ultra Sound View
13309109 3 3248 1828 +1420 Titan Relay View
13305827 10 3404 1984 +1420 Agnostic Gnosis View
13304504 4 3269 1850 +1419 BloXroute Regulated View
13306030 8 3357 1940 +1417 Titan Relay View
13308099 4 3265 1850 +1415 BloXroute Max Profit View
13303561 0 3172 1761 +1411 Titan Relay View
13306473 14 3483 2074 +1409 BloXroute Regulated View
13303382 3 3233 1828 +1405 BloXroute Regulated View
13303320 15 3501 2096 +1405 BloXroute Max Profit View
13302411 1 3187 1783 +1404 Ultra Sound View
13303832 1 3182 1783 +1399 Ultra Sound View
13302023 5 3271 1873 +1398 Ultra Sound View
13306373 6 3293 1895 +1398 Titan Relay View
13304721 9 3358 1962 +1396 Ultra Sound View
13302909 9 3357 1962 +1395 Titan Relay View
13307037 9 3354 1962 +1392 Ultra Sound View
13306954 10 3373 1984 +1389 Ultra Sound View
13305909 8 3327 1940 +1387 Ultra Sound View
13305552 5 3259 1873 +1386 Titan Relay View
13307895 8 3326 1940 +1386 Ultra Sound View
13308028 0 3147 1761 +1386 Aestus View
13303378 0 3145 1761 +1384 Titan Relay View
13302026 10 3367 1984 +1383 BloXroute Regulated View
13308728 9 3338 1962 +1376 Titan Relay View
13302415 9 3337 1962 +1375 BloXroute Max Profit View
13305303 11 3381 2007 +1374 Ultra Sound View
13308047 11 3380 2007 +1373 BloXroute Regulated View
13308704 3 3199 1828 +1371 Ultra Sound View
13303841 7 3287 1917 +1370 BloXroute Max Profit View
13305869 3 3189 1828 +1361 BloXroute Max Profit View
13304699 0 3121 1761 +1360 BloXroute Regulated View
13302645 9 3322 1962 +1360 Titan Relay View
13308469 5 3227 1873 +1354 Ultra Sound View
13307199 6 3248 1895 +1353 BloXroute Max Profit View
13305131 5 3225 1873 +1352 Ultra Sound View
13302852 0 3111 1761 +1350 Ultra Sound View
13303045 3 3178 1828 +1350 BloXroute Regulated View
13306474 0 3110 1761 +1349 BloXroute Max Profit View
13305607 5 3221 1873 +1348 Ultra Sound View
13306693 5 3221 1873 +1348 BloXroute Regulated View
13303209 8 3285 1940 +1345 BloXroute Regulated View
13305778 0 3106 1761 +1345 Agnostic Gnosis View
13302089 0 3106 1761 +1345 Titan Relay View
13306979 0 3105 1761 +1344 Flashbots View
13307090 5 3216 1873 +1343 Titan Relay View
13304750 0 3102 1761 +1341 Ultra Sound View
13308229 3 3168 1828 +1340 Ultra Sound View
13307537 12 3368 2029 +1339 Ultra Sound View
13305626 4 3188 1850 +1338 BloXroute Regulated View
13302794 0 3098 1761 +1337 Agnostic Gnosis View
13306832 3 3165 1828 +1337 Ultra Sound View
13303866 5 3209 1873 +1336 Titan Relay View
13304882 6 3230 1895 +1335 Agnostic Gnosis View
13307399 0 3095 1761 +1334 Ultra Sound View
13307668 3 3162 1828 +1334 BloXroute Max Profit View
13305254 6 3227 1895 +1332 Ultra Sound View
13306398 13 3380 2051 +1329 Ultra Sound View
13307307 5 3201 1873 +1328 BloXroute Max Profit View
13307937 10 3312 1984 +1328 Ultra Sound View
13304009 0 3088 1761 +1327 Titan Relay View
13308376 4 3177 1850 +1327 Ultra Sound View
13302900 4 3177 1850 +1327 BloXroute Max Profit View
13303157 8 3266 1940 +1326 Titan Relay View
13303372 0 3086 1761 +1325 Agnostic Gnosis View
13304806 5 3195 1873 +1322 BloXroute Max Profit View
13306455 12 3350 2029 +1321 Titan Relay View
13305926 4 3170 1850 +1320 BloXroute Max Profit View
13305441 4 3169 1850 +1319 Ultra Sound View
13306243 6 3213 1895 +1318 Ultra Sound View
13308786 0 3077 1761 +1316 Agnostic Gnosis View
13309072 6 3211 1895 +1316 Flashbots View
13306768 1 3099 1783 +1316 BloXroute Max Profit View
13307512 7 3231 1917 +1314 BloXroute Max Profit View
13306064 5 3185 1873 +1312 BloXroute Max Profit View
13305911 5 3183 1873 +1310 Ultra Sound View
13306134 0 3070 1761 +1309 Flashbots View
13307570 1 3092 1783 +1309 Titan Relay View
13308762 3 3136 1828 +1308 Ultra Sound View
13306755 1 3091 1783 +1308 Ultra Sound View
13306811 0 3068 1761 +1307 Titan Relay View
13303904 2 3112 1805 +1307 Aestus View
13305809 6 3201 1895 +1306 Ultra Sound View
13306377 9 3268 1962 +1306 Aestus View
13306694 3 3132 1828 +1304 BloXroute Max Profit View
13303281 1 3087 1783 +1304 BloXroute Regulated View
13304536 7 3220 1917 +1303 BloXroute Regulated View
13308566 0 3063 1761 +1302 Ultra Sound View
13304107 3 3130 1828 +1302 BloXroute Max Profit View
13304518 0 3062 1761 +1301 Ultra Sound View
13303047 6 3196 1895 +1301 Aestus View
13308471 1 3084 1783 +1301 BloXroute Max Profit View
13305166 0 3061 1761 +1300 Titan Relay View
13302300 9 3262 1962 +1300 Ultra Sound View
13308724 0 3060 1761 +1299 Flashbots View
13305897 7 3215 1917 +1298 Ultra Sound View
13305710 5 3170 1873 +1297 BloXroute Max Profit View
13303302 0 3058 1761 +1297 BloXroute Regulated View
13306160 0 3058 1761 +1297 Aestus View
13303953 7 3211 1917 +1294 Ultra Sound View
13305048 10 3278 1984 +1294 Titan Relay View
13307042 3 3121 1828 +1293 BloXroute Max Profit View
13309183 0 3052 1761 +1291 Titan Relay View
13307214 0 3050 1761 +1289 Ultra Sound View
13303837 0 3050 1761 +1289 Titan Relay View
13302414 0 3050 1761 +1289 BloXroute Max Profit View
Total anomalies: 210

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})