Mon, Dec 22, 2025

Propagation anomalies - 2025-12-22

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-22' AND slot_start_date_time < '2025-12-22'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-22' AND slot_start_date_time < '2025-12-22'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-22' AND slot_start_date_time < '2025-12-22'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-22' AND slot_start_date_time < '2025-12-22'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-22' AND slot_start_date_time < '2025-12-22'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-22' AND slot_start_date_time < '2025-12-22'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-22' AND slot_start_date_time < '2025-12-22'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-22' AND slot_start_date_time < '2025-12-22'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,172
MEV blocks: 6,675 (93.1%)
Local blocks: 497 (6.9%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1739.0 + 22.57 × blob_count (R² = 0.021)
Residual σ = 618.6ms
Anomalies (>2σ slow): 269 (3.8%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13297749 8 12467 1920 +10547 Local View
13295892 0 7249 1739 +5510 Local View
13300492 0 7109 1739 +5370 Local View
13297360 0 5363 1739 +3624 Local View
13301943 0 4162 1739 +2423 Local View
13296064 0 4131 1739 +2392 Local View
13297440 0 4001 1739 +2262 Local View
13296479 3 3927 1807 +2120 BloXroute Max Profit View
13296214 0 3851 1739 +2112 BloXroute Regulated View
13301504 5 3937 1852 +2085 Local View
13300096 11 4065 1987 +2078 Local View
13301120 3 3860 1807 +2053 Ultra Sound View
13301311 5 3890 1852 +2038 BloXroute Max Profit View
13296251 4 3801 1829 +1972 Aestus View
13295231 0 3677 1739 +1938 Flashbots View
13298866 3 3703 1807 +1896 Local View
13299261 0 3620 1739 +1881 Ultra Sound View
13300484 8 3779 1920 +1859 BloXroute Max Profit View
13298534 5 3673 1852 +1821 BloXroute Regulated View
13295746 5 3655 1852 +1803 Ultra Sound View
13301194 1 3557 1762 +1795 Ultra Sound View
13296937 1 3550 1762 +1788 Ultra Sound View
13296025 3 3584 1807 +1777 BloXroute Regulated View
13301412 0 3513 1739 +1774 BloXroute Regulated View
13296746 3 3575 1807 +1768 Titan Relay View
13300264 0 3505 1739 +1766 Ultra Sound View
13299727 0 3503 1739 +1764 BloXroute Regulated View
13299453 13 3790 2032 +1758 Ultra Sound View
13299361 1 3513 1762 +1751 Aestus View
13294870 0 3490 1739 +1751 Ultra Sound View
13300435 5 3596 1852 +1744 Ultra Sound View
13296003 4 3559 1829 +1730 Ultra Sound View
13296031 8 3638 1920 +1718 BloXroute Regulated View
13297036 6 3583 1874 +1709 Ultra Sound View
13298349 7 3590 1897 +1693 Ultra Sound View
13298141 6 3551 1874 +1677 BloXroute Max Profit View
13298096 4 3495 1829 +1666 BloXroute Regulated View
13294828 4 3480 1829 +1651 Ultra Sound View
13301071 1 3412 1762 +1650 BloXroute Regulated View
13296472 5 3500 1852 +1648 Ultra Sound View
13298515 5 3495 1852 +1643 Ultra Sound View
13296885 8 3555 1920 +1635 Ultra Sound View
13300098 8 3538 1920 +1618 BloXroute Regulated View
13301248 1 3379 1762 +1617 Ultra Sound View
13299977 1 3379 1762 +1617 Local View
13296654 5 3467 1852 +1615 BloXroute Regulated View
13300271 11 3595 1987 +1608 Ultra Sound View
13296826 12 3614 2010 +1604 Ultra Sound View
13299380 0 3342 1739 +1603 Ultra Sound View
13301017 6 3443 1874 +1569 Ultra Sound View
13295392 3 3365 1807 +1558 Ultra Sound View
13300756 1 3313 1762 +1551 BloXroute Regulated View
13300027 5 3403 1852 +1551 Ultra Sound View
13295217 0 3290 1739 +1551 BloXroute Max Profit View
13301861 1 3312 1762 +1550 Titan Relay View
13298177 0 3287 1739 +1548 BloXroute Regulated View
13301110 6 3421 1874 +1547 BloXroute Max Profit View
13294937 9 3486 1942 +1544 Ultra Sound View
13299892 0 3278 1739 +1539 Titan Relay View
13297794 1 3272 1762 +1510 BloXroute Regulated View
13296808 1 3269 1762 +1507 BloXroute Regulated View
13298054 0 3244 1739 +1505 Titan Relay View
13296639 2 3283 1784 +1499 BloXroute Regulated View
13295538 3 3298 1807 +1491 Titan Relay View
13300746 6 3365 1874 +1491 BloXroute Regulated View
13297413 0 3228 1739 +1489 BloXroute Max Profit View
13294811 3 3292 1807 +1485 Titan Relay View
13295747 3 3291 1807 +1484 BloXroute Regulated View
13299509 5 3329 1852 +1477 BloXroute Max Profit View
13295513 1 3238 1762 +1476 Ultra Sound View
13300938 3 3281 1807 +1474 BloXroute Regulated View
13301938 3 3279 1807 +1472 BloXroute Regulated View
13300786 7 3369 1897 +1472 Ultra Sound View
13298143 0 3211 1739 +1472 Ultra Sound View
13300602 8 3390 1920 +1470 Ultra Sound View
13300026 1 3231 1762 +1469 BloXroute Regulated View
13297607 6 3342 1874 +1468 Titan Relay View
13301870 5 3314 1852 +1462 Titan Relay View
13295363 3 3268 1807 +1461 BloXroute Regulated View
13298346 12 3470 2010 +1460 BloXroute Regulated View
13295070 5 3293 1852 +1441 BloXroute Max Profit View
13298917 0 3178 1739 +1439 Agnostic Gnosis View
13300024 6 3313 1874 +1439 Ultra Sound View
13297408 5 3290 1852 +1438 Ultra Sound View
13298929 5 3290 1852 +1438 BloXroute Max Profit View
13298098 9 3376 1942 +1434 BloXroute Regulated View
13300327 0 3171 1739 +1432 Ultra Sound View
13299963 1 3188 1762 +1426 BloXroute Max Profit View
13297060 1 3185 1762 +1423 BloXroute Regulated View
13301481 6 3297 1874 +1423 BloXroute Regulated View
13300645 7 3319 1897 +1422 Titan Relay View
13301952 8 3340 1920 +1420 Ultra Sound View
13298508 5 3272 1852 +1420 Titan Relay View
13299831 9 3361 1942 +1419 Ultra Sound View
13297335 9 3359 1942 +1417 BloXroute Regulated View
13298114 0 3154 1739 +1415 Ultra Sound View
13300348 0 3152 1739 +1413 Agnostic Gnosis View
13297339 8 3330 1920 +1410 Ultra Sound View
13300646 2 3193 1784 +1409 BloXroute Regulated View
13298182 5 3257 1852 +1405 BloXroute Regulated View
13298239 5 3254 1852 +1402 BloXroute Max Profit View
13299762 4 3231 1829 +1402 BloXroute Regulated View
13301019 7 3296 1897 +1399 Ultra Sound View
13297045 3 3205 1807 +1398 BloXroute Regulated View
13298657 0 3136 1739 +1397 Ultra Sound View
13298725 6 3271 1874 +1397 Flashbots View
13300202 3 3203 1807 +1396 Titan Relay View
13300230 9 3337 1942 +1395 BloXroute Regulated View
13296341 0 3128 1739 +1389 BloXroute Max Profit View
13295557 9 3331 1942 +1389 BloXroute Regulated View
13299958 8 3306 1920 +1386 Titan Relay View
13296772 2 3170 1784 +1386 Agnostic Gnosis View
13299985 5 3233 1852 +1381 Ultra Sound View
13298356 1 3142 1762 +1380 BloXroute Regulated View
13297206 6 3252 1874 +1378 Titan Relay View
13301813 8 3297 1920 +1377 Titan Relay View
13300707 7 3274 1897 +1377 Ultra Sound View
13299220 0 3116 1739 +1377 BloXroute Regulated View
13300274 0 3114 1739 +1375 BloXroute Max Profit View
13299372 4 3202 1829 +1373 BloXroute Regulated View
13295047 6 3247 1874 +1373 BloXroute Max Profit View
13299017 5 3221 1852 +1369 BloXroute Regulated View
13301449 0 3108 1739 +1369 Titan Relay View
13294930 0 3108 1739 +1369 BloXroute Regulated View
13297096 0 3108 1739 +1369 Aestus View
13301585 6 3240 1874 +1366 BloXroute Max Profit View
13298745 15 3442 2078 +1364 Titan Relay View
13299587 5 3215 1852 +1363 BloXroute Max Profit View
13299293 3 3166 1807 +1359 Ultra Sound View
13300135 5 3208 1852 +1356 BloXroute Max Profit View
13296494 13 3388 2032 +1356 Titan Relay View
13298685 1 3113 1762 +1351 Aestus View
13296167 0 3090 1739 +1351 Flashbots View
13297199 9 3293 1942 +1351 Titan Relay View
13301292 1 3110 1762 +1348 BloXroute Max Profit View
13299916 0 3087 1739 +1348 Flashbots View
13296387 10 3311 1965 +1346 BloXroute Regulated View
13299778 0 3085 1739 +1346 Agnostic Gnosis View
13301692 2 3130 1784 +1346 Ultra Sound View
13296502 10 3310 1965 +1345 BloXroute Regulated View
13300428 0 3083 1739 +1344 Ultra Sound View
13300094 3 3150 1807 +1343 BloXroute Max Profit View
13298324 0 3082 1739 +1343 Ultra Sound View
13296471 4 3172 1829 +1343 BloXroute Max Profit View
13300620 5 3193 1852 +1341 Ultra Sound View
13298747 5 3193 1852 +1341 Ultra Sound View
13296091 4 3170 1829 +1341 Ultra Sound View
13297027 0 3079 1739 +1340 BloXroute Regulated View
13300017 5 3190 1852 +1338 BloXroute Max Profit View
13301948 3 3144 1807 +1337 Ultra Sound View
13299093 0 3076 1739 +1337 Ultra Sound View
13299448 1 3098 1762 +1336 BloXroute Max Profit View
13297357 5 3188 1852 +1336 BloXroute Regulated View
13295587 4 3165 1829 +1336 Ultra Sound View
13299324 3 3142 1807 +1335 Ultra Sound View
13297351 7 3232 1897 +1335 Ultra Sound View
13299214 8 3254 1920 +1334 BloXroute Regulated View
13299808 5 3186 1852 +1334 Titan Relay View
13299095 4 3162 1829 +1333 Ultra Sound View
13297651 6 3207 1874 +1333 BloXroute Max Profit View
13296964 3 3139 1807 +1332 Ultra Sound View
13301679 6 3205 1874 +1331 Ultra Sound View
13296527 0 3069 1739 +1330 BloXroute Regulated View
13301941 6 3204 1874 +1330 Ultra Sound View
13298754 8 3249 1920 +1329 BloXroute Max Profit View
13297208 6 3203 1874 +1329 BloXroute Max Profit View
13298244 11 3315 1987 +1328 BloXroute Max Profit View
13297721 6 3202 1874 +1328 BloXroute Max Profit View
13297261 4 3156 1829 +1327 Ultra Sound View
13299274 15 3403 2078 +1325 BloXroute Regulated View
13298181 1 3087 1762 +1325 BloXroute Max Profit View
13301476 0 3064 1739 +1325 Aestus View
13297943 0 3064 1739 +1325 Ultra Sound View
13298336 1 3086 1762 +1324 Ultra Sound View
13299666 0 3063 1739 +1324 BloXroute Max Profit View
13297210 3 3130 1807 +1323 Ultra Sound View
13298056 7 3220 1897 +1323 Agnostic Gnosis View
13296710 0 3061 1739 +1322 Titan Relay View
13301228 8 3240 1920 +1320 BloXroute Max Profit View
13298899 13 3350 2032 +1318 BloXroute Max Profit View
13297178 1 3079 1762 +1317 BloXroute Regulated View
13295562 4 3144 1829 +1315 BloXroute Max Profit View
13298871 5 3166 1852 +1314 Agnostic Gnosis View
13297591 3 3120 1807 +1313 Ultra Sound View
13297611 15 3389 2078 +1311 Ultra Sound View
13299076 8 3230 1920 +1310 Ultra Sound View
13301598 5 3162 1852 +1310 BloXroute Max Profit View
13301902 1 3070 1762 +1308 Titan Relay View
13295469 1 3070 1762 +1308 BloXroute Max Profit View
13297217 6 3179 1874 +1305 Ultra Sound View
13296402 6 3179 1874 +1305 BloXroute Max Profit View
13298022 8 3224 1920 +1304 BloXroute Max Profit View
13301772 0 3043 1739 +1304 Ultra Sound View
13299517 0 3043 1739 +1304 BloXroute Max Profit View
13298507 2 3088 1784 +1304 Agnostic Gnosis View
13295413 13 3334 2032 +1302 Ultra Sound View
13297832 5 3152 1852 +1300 Ultra Sound View
13300495 0 3037 1739 +1298 Ultra Sound View
13296586 5 3149 1852 +1297 BloXroute Max Profit View
13298382 8 3215 1920 +1295 BloXroute Max Profit View
13294894 14 3350 2055 +1295 Titan Relay View
13295728 0 3034 1739 +1295 BloXroute Max Profit View
13295296 13 3327 2032 +1295 BloXroute Max Profit View
13297655 7 3191 1897 +1294 Ultra Sound View
13298928 0 3033 1739 +1294 Ultra Sound View
13300704 11 3281 1987 +1294 Ultra Sound View
13296070 5 3145 1852 +1293 Ultra Sound View
13296195 5 3143 1852 +1291 Aestus View
13299403 0 3030 1739 +1291 BloXroute Max Profit View
13301522 8 3210 1920 +1290 BloXroute Max Profit View
13299647 9 3232 1942 +1290 Ultra Sound View
13297523 0 3027 1739 +1288 Ultra Sound View
13295856 5 3139 1852 +1287 Agnostic Gnosis View
13300805 0 3026 1739 +1287 Ultra Sound View
13297113 4 3116 1829 +1287 Ultra Sound View
13296847 0 3025 1739 +1286 Agnostic Gnosis View
13296768 8 3205 1920 +1285 Titan Relay View
13296813 1 3047 1762 +1285 Ultra Sound View
13298026 0 3024 1739 +1285 Ultra Sound View
13300863 6 3159 1874 +1285 Flashbots View
13301220 14 3339 2055 +1284 BloXroute Max Profit View
13300258 7 3181 1897 +1284 BloXroute Max Profit View
13300048 0 3023 1739 +1284 Titan Relay View
13299459 2 3068 1784 +1284 Ultra Sound View
13295495 5 3134 1852 +1282 BloXroute Max Profit View
13300304 5 3134 1852 +1282 Flashbots View
13296098 3 3088 1807 +1281 BloXroute Regulated View
13299530 5 3133 1852 +1281 BloXroute Max Profit View
13299662 4 3108 1829 +1279 Ultra Sound View
13300635 8 3197 1920 +1277 Titan Relay View
13299033 3 3081 1807 +1274 Agnostic Gnosis View
13300559 6 3148 1874 +1274 Flashbots View
13295080 4 3102 1829 +1273 BloXroute Max Profit View
13297792 6 3147 1874 +1273 Titan Relay View
13296595 6 3146 1874 +1272 BloXroute Max Profit View
13300732 8 3191 1920 +1271 BloXroute Max Profit View
13300173 3 3077 1807 +1270 Ultra Sound View
13298436 5 3122 1852 +1270 BloXroute Max Profit View
13295775 2 3052 1784 +1268 Titan Relay View
13299948 1 3028 1762 +1266 BloXroute Max Profit View
13296345 4 3095 1829 +1266 Ultra Sound View
13298212 3 3071 1807 +1264 BloXroute Max Profit View
13300981 0 3003 1739 +1264 Ultra Sound View
13297517 2 3047 1784 +1263 Ultra Sound View
13299231 6 3137 1874 +1263 BloXroute Max Profit View
13296757 3 3068 1807 +1261 BloXroute Regulated View
13298265 5 3113 1852 +1261 BloXroute Max Profit View
13296820 1 3022 1762 +1260 BloXroute Max Profit View
13297646 12 3268 2010 +1258 BloXroute Regulated View
13301429 0 2997 1739 +1258 Titan Relay View
13300521 9 3199 1942 +1257 BloXroute Max Profit View
13298170 8 3176 1920 +1256 Ultra Sound View
13299618 3 3060 1807 +1253 Ultra Sound View
13301086 5 3104 1852 +1252 BloXroute Regulated View
13301544 4 3081 1829 +1252 Aestus View
13295118 14 3306 2055 +1251 Ultra Sound View
13297787 9 3193 1942 +1251 BloXroute Max Profit View
13296044 5 3102 1852 +1250 BloXroute Regulated View
13296163 7 3147 1897 +1250 BloXroute Max Profit View
13299500 0 2987 1739 +1248 BloXroute Max Profit View
13298279 11 3232 1987 +1245 BloXroute Max Profit View
13301294 5 3096 1852 +1244 BloXroute Max Profit View
13297540 9 3186 1942 +1244 BloXroute Max Profit View
13296792 1 3005 1762 +1243 Ultra Sound View
13297453 10 3208 1965 +1243 Ultra Sound View
13297602 3 3050 1807 +1243 Flashbots View
13294866 9 3185 1942 +1243 BloXroute Max Profit View
13297687 0 2981 1739 +1242 Titan Relay View
13300407 4 3069 1829 +1240 BloXroute Max Profit View
Total anomalies: 269

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})