Thu, Dec 25, 2025

Propagation anomalies - 2025-12-25

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-25' AND slot_start_date_time < '2025-12-25'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-25' AND slot_start_date_time < '2025-12-25'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-25' AND slot_start_date_time < '2025-12-25'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-25' AND slot_start_date_time < '2025-12-25'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-25' AND slot_start_date_time < '2025-12-25'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-25' AND slot_start_date_time < '2025-12-25'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-25' AND slot_start_date_time < '2025-12-25'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-25' AND slot_start_date_time < '2025-12-25'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,173
MEV blocks: 6,621 (92.3%)
Local blocks: 552 (7.7%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1761.8 + 18.08 × blob_count (R² = 0.011)
Residual σ = 621.6ms
Anomalies (>2σ slow): 244 (3.4%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13316811 0 9950 1762 +8188 Local View
13317334 0 6988 1762 +5226 Local View
13316896 0 6615 1762 +4853 Local View
13321823 0 6270 1762 +4508 Local View
13319179 0 5103 1762 +3341 Local View
13320188 0 4804 1762 +3042 Local View
13316448 0 4141 1762 +2379 Local View
13316861 0 4123 1762 +2361 Local View
13318970 0 3958 1762 +2196 Local View
13322805 0 3887 1762 +2125 Titan Relay View
13317983 8 4028 1906 +2122 Local View
13320865 0 3830 1762 +2068 Local View
13318784 8 3864 1906 +1958 Ultra Sound View
13323253 9 3867 1924 +1943 BloXroute Max Profit View
13320900 5 3765 1852 +1913 Ultra Sound View
13318368 1 3641 1780 +1861 BloXroute Regulated View
13319387 1 3639 1780 +1859 Ultra Sound View
13319315 6 3713 1870 +1843 Ultra Sound View
13318610 0 3593 1762 +1831 BloXroute Regulated View
13321588 0 3588 1762 +1826 Ultra Sound View
13323545 1 3598 1780 +1818 Titan Relay View
13321381 9 3741 1924 +1817 Titan Relay View
13317681 5 3649 1852 +1797 Titan Relay View
13322493 4 3600 1834 +1766 Ultra Sound View
13320231 10 3706 1943 +1763 BloXroute Regulated View
13322437 6 3630 1870 +1760 BloXroute Regulated View
13321870 7 3637 1888 +1749 Titan Relay View
13317105 2 3541 1798 +1743 Ultra Sound View
13318068 3 3553 1816 +1737 Titan Relay View
13316494 8 3628 1906 +1722 Ultra Sound View
13317992 5 3568 1852 +1716 Ultra Sound View
13318021 5 3563 1852 +1711 Ultra Sound View
13321391 8 3614 1906 +1708 Titan Relay View
13320944 0 3454 1762 +1692 Ultra Sound View
13322154 0 3430 1762 +1668 Ultra Sound View
13320183 12 3626 1979 +1647 Titan Relay View
13320662 5 3478 1852 +1626 Ultra Sound View
13317468 5 3464 1852 +1612 Ultra Sound View
13321534 3 3416 1816 +1600 Ultra Sound View
13319991 0 3358 1762 +1596 Ultra Sound View
13320832 4 3422 1834 +1588 Agnostic Gnosis View
13321495 5 3435 1852 +1583 Ultra Sound View
13316992 0 3333 1762 +1571 Titan Relay View
13321318 2 3360 1798 +1562 Local View
13321050 0 3322 1762 +1560 Ultra Sound View
13316452 1 3334 1780 +1554 Local View
13317024 1 3325 1780 +1545 Ultra Sound View
13320262 0 3302 1762 +1540 Ultra Sound View
13318016 3 3346 1816 +1530 Ultra Sound View
13320416 4 3356 1834 +1522 Agnostic Gnosis View
13319576 6 3392 1870 +1522 Ultra Sound View
13320934 4 3355 1834 +1521 BloXroute Regulated View
13320714 0 3282 1762 +1520 Ultra Sound View
13322076 1 3299 1780 +1519 BloXroute Regulated View
13318631 8 3422 1906 +1516 BloXroute Regulated View
13317862 1 3291 1780 +1511 BloXroute Regulated View
13318877 0 3272 1762 +1510 Ultra Sound View
13321928 5 3361 1852 +1509 BloXroute Regulated View
13317413 1 3282 1780 +1502 BloXroute Regulated View
13318721 0 3262 1762 +1500 Titan Relay View
13323060 1 3277 1780 +1497 Titan Relay View
13320333 1 3276 1780 +1496 BloXroute Regulated View
13318963 8 3398 1906 +1492 Ultra Sound View
13323126 5 3342 1852 +1490 BloXroute Regulated View
13318651 5 3342 1852 +1490 Titan Relay View
13317791 8 3395 1906 +1489 Ultra Sound View
13317951 2 3286 1798 +1488 Titan Relay View
13323197 0 3244 1762 +1482 Ultra Sound View
13323364 3 3298 1816 +1482 Titan Relay View
13320093 1 3261 1780 +1481 Ultra Sound View
13317285 1 3260 1780 +1480 BloXroute Regulated View
13322797 3 3295 1816 +1479 Titan Relay View
13322395 0 3238 1762 +1476 BloXroute Regulated View
13318493 9 3398 1924 +1474 BloXroute Regulated View
13319087 11 3434 1961 +1473 BloXroute Max Profit View
13316583 1 3248 1780 +1468 Local View
13319104 2 3266 1798 +1468 Ultra Sound View
13321062 5 3319 1852 +1467 BloXroute Max Profit View
13320694 4 3296 1834 +1462 BloXroute Regulated View
13322147 0 3221 1762 +1459 BloXroute Regulated View
13320493 0 3220 1762 +1458 Ultra Sound View
13317399 1 3238 1780 +1458 Ultra Sound View
13323172 9 3379 1924 +1455 BloXroute Regulated View
13318964 4 3288 1834 +1454 EthGas View
13323049 7 3338 1888 +1450 Titan Relay View
13319264 8 3355 1906 +1449 Titan Relay View
13322030 5 3297 1852 +1445 Titan Relay View
13321141 5 3294 1852 +1442 BloXroute Regulated View
13319786 6 3308 1870 +1438 BloXroute Regulated View
13319141 8 3344 1906 +1438 BloXroute Regulated View
13317479 3 3253 1816 +1437 Titan Relay View
13317581 5 3286 1852 +1434 Ultra Sound View
13318133 0 3194 1762 +1432 BloXroute Regulated View
13322455 3 3240 1816 +1424 Aestus View
13316967 4 3257 1834 +1423 Ultra Sound View
13319334 1 3200 1780 +1420 Ultra Sound View
13317145 4 3254 1834 +1420 BloXroute Regulated View
13319280 5 3268 1852 +1416 Flashbots View
13322784 8 3322 1906 +1416 Local View
13317500 2 3209 1798 +1411 BloXroute Regulated View
13320007 5 3263 1852 +1411 Ultra Sound View
13321308 4 3244 1834 +1410 BloXroute Regulated View
13320888 4 3244 1834 +1410 BloXroute Regulated View
13317184 13 3404 1997 +1407 Ultra Sound View
13317214 5 3257 1852 +1405 Titan Relay View
13319011 3 3216 1816 +1400 Ultra Sound View
13322598 6 3266 1870 +1396 BloXroute Regulated View
13321546 1 3175 1780 +1395 Aestus View
13322623 3 3209 1816 +1393 Agnostic Gnosis View
13321428 8 3299 1906 +1393 Ultra Sound View
13316615 8 3299 1906 +1393 BloXroute Regulated View
13321177 6 3261 1870 +1391 Titan Relay View
13321799 0 3152 1762 +1390 BloXroute Max Profit View
13322468 0 3150 1762 +1388 Aestus View
13317433 3 3199 1816 +1383 Flashbots View
13320643 3 3196 1816 +1380 Ultra Sound View
13318917 0 3141 1762 +1379 Titan Relay View
13323176 0 3139 1762 +1377 Titan Relay View
13323514 5 3226 1852 +1374 BloXroute Regulated View
13322412 9 3295 1924 +1371 Titan Relay View
13319565 12 3349 1979 +1370 Titan Relay View
13319441 8 3274 1906 +1368 BloXroute Max Profit View
13323117 4 3193 1834 +1359 Ultra Sound View
13317362 5 3211 1852 +1359 Agnostic Gnosis View
13319597 6 3228 1870 +1358 Ultra Sound View
13321603 0 3119 1762 +1357 Ultra Sound View
13317840 0 3116 1762 +1354 Titan Relay View
13317336 14 3367 2015 +1352 Titan Relay View
13321105 3 3166 1816 +1350 Ultra Sound View
13322460 10 3292 1943 +1349 BloXroute Max Profit View
13323182 1 3127 1780 +1347 Agnostic Gnosis View
13321838 0 3108 1762 +1346 BloXroute Max Profit View
13319234 3 3161 1816 +1345 BloXroute Regulated View
13322666 5 3197 1852 +1345 BloXroute Max Profit View
13317542 12 3323 1979 +1344 Titan Relay View
13318285 3 3160 1816 +1344 BloXroute Max Profit View
13319737 4 3178 1834 +1344 Ultra Sound View
13318947 8 3248 1906 +1342 EthGas View
13321364 3 3157 1816 +1341 BloXroute Max Profit View
13321640 6 3211 1870 +1341 Ultra Sound View
13317912 7 3228 1888 +1340 BloXroute Max Profit View
13322629 3 3155 1816 +1339 Ultra Sound View
13319015 5 3191 1852 +1339 BloXroute Max Profit View
13316955 1 3117 1780 +1337 Aestus View
13318340 6 3206 1870 +1336 Agnostic Gnosis View
13317543 6 3204 1870 +1334 BloXroute Max Profit View
13322002 11 3294 1961 +1333 Ultra Sound View
13319174 11 3294 1961 +1333 Ultra Sound View
13317182 0 3095 1762 +1333 BloXroute Max Profit View
13321350 2 3130 1798 +1332 BloXroute Regulated View
13317034 11 3289 1961 +1328 Agnostic Gnosis View
13318820 0 3090 1762 +1328 Agnostic Gnosis View
13321018 6 3194 1870 +1324 BloXroute Max Profit View
13323296 8 3230 1906 +1324 Titan Relay View
13318648 7 3209 1888 +1321 Ultra Sound View
13318589 5 3172 1852 +1320 Ultra Sound View
13319002 8 3226 1906 +1320 Agnostic Gnosis View
13319090 1 3099 1780 +1319 BloXroute Max Profit View
13318836 7 3207 1888 +1319 BloXroute Max Profit View
13321819 5 3170 1852 +1318 BloXroute Max Profit View
13320913 0 3079 1762 +1317 Ultra Sound View
13319376 10 3259 1943 +1316 Flashbots View
13318914 0 3078 1762 +1316 Ultra Sound View
13323264 0 3077 1762 +1315 BloXroute Regulated View
13317874 1 3094 1780 +1314 Ultra Sound View
13322682 0 3074 1762 +1312 Flashbots View
13322704 0 3074 1762 +1312 BloXroute Max Profit View
13316965 0 3074 1762 +1312 Titan Relay View
13320418 3 3128 1816 +1312 Titan Relay View
13321116 0 3073 1762 +1311 Ultra Sound View
13317305 1 3091 1780 +1311 Flashbots View
13318300 0 3071 1762 +1309 Ultra Sound View
13320504 1 3087 1780 +1307 Titan Relay View
13319790 5 3159 1852 +1307 Agnostic Gnosis View
13317533 0 3068 1762 +1306 Ultra Sound View
13321740 0 3067 1762 +1305 Agnostic Gnosis View
13321585 3 3121 1816 +1305 Local View
13319184 0 3064 1762 +1302 Local View
13317023 14 3317 2015 +1302 Ultra Sound View
13316447 7 3187 1888 +1299 Ultra Sound View
13321183 0 3060 1762 +1298 BloXroute Max Profit View
13316818 0 3060 1762 +1298 BloXroute Max Profit View
13319056 9 3221 1924 +1297 BloXroute Max Profit View
13317237 0 3057 1762 +1295 Aestus View
13317643 3 3111 1816 +1295 BloXroute Max Profit View
13318735 6 3165 1870 +1295 BloXroute Max Profit View
13321626 4 3128 1834 +1294 Ultra Sound View
13318543 6 3164 1870 +1294 BloXroute Regulated View
13318991 5 3145 1852 +1293 BloXroute Regulated View
13321670 0 3053 1762 +1291 Ultra Sound View
13320938 5 3143 1852 +1291 BloXroute Max Profit View
13322901 1 3070 1780 +1290 BloXroute Max Profit View
13318945 0 3051 1762 +1289 Ultra Sound View
13322219 0 3050 1762 +1288 Ultra Sound View
13319840 0 3050 1762 +1288 BloXroute Max Profit View
13319328 3 3103 1816 +1287 Agnostic Gnosis View
13321857 0 3047 1762 +1285 Aestus View
13317718 6 3154 1870 +1284 Ultra Sound View
13319410 2 3080 1798 +1282 BloXroute Max Profit View
13316781 0 3041 1762 +1279 BloXroute Max Profit View
13321803 1 3059 1780 +1279 BloXroute Max Profit View
13317979 0 3039 1762 +1277 Ultra Sound View
13319625 10 3219 1943 +1276 Ultra Sound View
13318759 0 3038 1762 +1276 Agnostic Gnosis View
13318177 6 3146 1870 +1276 Flashbots View
13319081 0 3037 1762 +1275 Local View
13322929 0 3037 1762 +1275 Aestus View
13316740 0 3036 1762 +1274 Ultra Sound View
13322112 11 3233 1961 +1272 Ultra Sound View
13322851 0 3034 1762 +1272 BloXroute Regulated View
13320550 4 3106 1834 +1272 BloXroute Max Profit View
13320961 0 3033 1762 +1271 Ultra Sound View
13322833 5 3122 1852 +1270 BloXroute Max Profit View
13318253 0 3031 1762 +1269 Flashbots View
13321258 4 3102 1834 +1268 Agnostic Gnosis View
13320119 5 3120 1852 +1268 Agnostic Gnosis View
13323280 0 3029 1762 +1267 Ultra Sound View
13323199 0 3029 1762 +1267 Aestus View
13321911 2 3064 1798 +1266 Ultra Sound View
13321322 5 3118 1852 +1266 BloXroute Max Profit View
13319936 3 3080 1816 +1264 Ultra Sound View
13318787 2 3060 1798 +1262 Ultra Sound View
13319849 7 3148 1888 +1260 BloXroute Max Profit View
13320619 10 3202 1943 +1259 BloXroute Max Profit View
13316478 0 3021 1762 +1259 BloXroute Max Profit View
13321806 3 3075 1816 +1259 BloXroute Max Profit View
13323523 0 3020 1762 +1258 BloXroute Max Profit View
13316660 0 3018 1762 +1256 Aestus View
13319089 1 3036 1780 +1256 Flashbots View
13322345 5 3108 1852 +1256 Ultra Sound View
13316600 7 3144 1888 +1256 BloXroute Max Profit View
13317092 0 3017 1762 +1255 Ultra Sound View
13319970 3 3071 1816 +1255 BloXroute Max Profit View
13317903 6 3125 1870 +1255 BloXroute Max Profit View
13322040 3 3070 1816 +1254 Titan Relay View
13318565 5 3105 1852 +1253 Ultra Sound View
13321368 4 3086 1834 +1252 Ultra Sound View
13322133 6 3122 1870 +1252 Flashbots View
13319013 2 3047 1798 +1249 Flashbots View
13323432 9 3173 1924 +1249 Agnostic Gnosis View
13321034 0 3010 1762 +1248 BloXroute Max Profit View
13318692 11 3208 1961 +1247 Ultra Sound View
13320369 9 3170 1924 +1246 BloXroute Max Profit View
13321202 5 3096 1852 +1244 Ultra Sound View
Total anomalies: 244

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})