Fri, Dec 26, 2025

Propagation anomalies - 2025-12-26

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-26' AND slot_start_date_time < '2025-12-26'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-26' AND slot_start_date_time < '2025-12-26'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-26' AND slot_start_date_time < '2025-12-26'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-26' AND slot_start_date_time < '2025-12-26'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-26' AND slot_start_date_time < '2025-12-26'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-26' AND slot_start_date_time < '2025-12-26'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-26' AND slot_start_date_time < '2025-12-26'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-26' AND slot_start_date_time < '2025-12-26'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,161
MEV blocks: 6,651 (92.9%)
Local blocks: 510 (7.1%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1757.3 + 18.59 × blob_count (R² = 0.012)
Residual σ = 608.2ms
Anomalies (>2σ slow): 280 (3.9%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13328695 0 9140 1757 +7383 Local View
13324065 0 6291 1757 +4534 Local View
13324832 0 3918 1757 +2161 Local View
13328769 0 3751 1757 +1994 Local View
13325536 5 3831 1850 +1981 BloXroute Regulated View
13327194 8 3800 1906 +1894 Ultra Sound View
13330655 3 3700 1813 +1887 BloXroute Max Profit View
13328806 6 3731 1869 +1862 BloXroute Regulated View
13323805 0 3589 1757 +1832 Titan Relay View
13325549 2 3617 1794 +1823 Titan Relay View
13330688 0 3575 1757 +1818 Local View
13324282 0 3559 1757 +1802 Titan Relay View
13329956 0 3548 1757 +1791 BloXroute Regulated View
13330656 0 3539 1757 +1782 Titan Relay View
13326944 12 3761 1980 +1781 Local View
13327589 6 3630 1869 +1761 Ultra Sound View
13326542 8 3658 1906 +1752 Titan Relay View
13327010 9 3674 1925 +1749 BloXroute Regulated View
13328519 0 3504 1757 +1747 Aestus View
13328954 4 3576 1832 +1744 Ultra Sound View
13330424 5 3593 1850 +1743 Ultra Sound View
13330691 5 3579 1850 +1729 BloXroute Regulated View
13328308 8 3631 1906 +1725 Ultra Sound View
13326694 8 3623 1906 +1717 BloXroute Regulated View
13326246 4 3542 1832 +1710 Flashbots View
13326103 10 3653 1943 +1710 Ultra Sound View
13330571 8 3597 1906 +1691 Titan Relay View
13327033 6 3556 1869 +1687 Ultra Sound View
13324928 4 3491 1832 +1659 Ultra Sound View
13329706 8 3563 1906 +1657 Ultra Sound View
13328453 3 3470 1813 +1657 Ultra Sound View
13326744 1 3409 1776 +1633 Titan Relay View
13327904 0 3386 1757 +1629 Ultra Sound View
13325684 0 3378 1757 +1621 Ultra Sound View
13328668 13 3611 1999 +1612 Ultra Sound View
13324681 3 3399 1813 +1586 Titan Relay View
13324483 5 3434 1850 +1584 Ultra Sound View
13327808 6 3448 1869 +1579 Ultra Sound View
13330257 0 3336 1757 +1579 Ultra Sound View
13329632 1 3353 1776 +1577 BloXroute Regulated View
13325988 8 3479 1906 +1573 Ultra Sound View
13326529 0 3325 1757 +1568 BloXroute Regulated View
13330195 0 3323 1757 +1566 Titan Relay View
13330570 0 3319 1757 +1562 Ultra Sound View
13329081 0 3317 1757 +1560 Local View
13326829 11 3518 1962 +1556 Ultra Sound View
13327431 5 3403 1850 +1553 Ultra Sound View
13325408 5 3397 1850 +1547 Ultra Sound View
13325596 8 3450 1906 +1544 BloXroute Regulated View
13327256 7 3429 1887 +1542 BloXroute Regulated View
13330419 6 3406 1869 +1537 BloXroute Regulated View
13329751 0 3294 1757 +1537 Ultra Sound View
13329215 0 3292 1757 +1535 Titan Relay View
13325627 8 3435 1906 +1529 Ultra Sound View
13325773 7 3416 1887 +1529 BloXroute Regulated View
13328526 0 3285 1757 +1528 BloXroute Regulated View
13325915 5 3376 1850 +1526 BloXroute Regulated View
13329010 10 3468 1943 +1525 Ultra Sound View
13326942 9 3445 1925 +1520 Flashbots View
13326514 0 3276 1757 +1519 Ultra Sound View
13326908 0 3275 1757 +1518 Ultra Sound View
13324306 4 3349 1832 +1517 BloXroute Regulated View
13328416 3 3320 1813 +1507 BloXroute Max Profit View
13327371 1 3280 1776 +1504 BloXroute Regulated View
13330066 0 3261 1757 +1504 Titan Relay View
13328291 8 3408 1906 +1502 Ultra Sound View
13324650 12 3482 1980 +1502 Ultra Sound View
13328367 4 3330 1832 +1498 Ultra Sound View
13328126 6 3366 1869 +1497 Titan Relay View
13328763 5 3345 1850 +1495 BloXroute Regulated View
13329922 8 3396 1906 +1490 BloXroute Regulated View
13329941 7 3377 1887 +1490 BloXroute Regulated View
13325891 3 3301 1813 +1488 Ultra Sound View
13325669 0 3240 1757 +1483 Local View
13326404 3 3295 1813 +1482 BloXroute Regulated View
13327543 5 3332 1850 +1482 Ultra Sound View
13326131 0 3239 1757 +1482 BloXroute Regulated View
13330104 5 3323 1850 +1473 BloXroute Regulated View
13328256 0 3226 1757 +1469 Titan Relay View
13327626 5 3318 1850 +1468 BloXroute Regulated View
13326112 6 3335 1869 +1466 Titan Relay View
13327680 5 3315 1850 +1465 Ultra Sound View
13325754 5 3311 1850 +1461 Titan Relay View
13324246 9 3385 1925 +1460 BloXroute Regulated View
13324890 6 3329 1869 +1460 BloXroute Regulated View
13330410 5 3310 1850 +1460 BloXroute Regulated View
13327314 6 3327 1869 +1458 Ultra Sound View
13327724 0 3215 1757 +1458 BloXroute Regulated View
13330486 5 3303 1850 +1453 Titan Relay View
13327419 6 3321 1869 +1452 BloXroute Regulated View
13324757 10 3393 1943 +1450 BloXroute Regulated View
13329554 8 3355 1906 +1449 BloXroute Regulated View
13324430 6 3317 1869 +1448 BloXroute Max Profit View
13329899 3 3261 1813 +1448 BloXroute Regulated View
13325302 0 3204 1757 +1447 BloXroute Regulated View
13323943 0 3204 1757 +1447 Ultra Sound View
13326023 6 3313 1869 +1444 Titan Relay View
13330110 0 3200 1757 +1443 BloXroute Max Profit View
13328627 6 3311 1869 +1442 BloXroute Regulated View
13328387 6 3311 1869 +1442 Ultra Sound View
13328791 4 3272 1832 +1440 BloXroute Regulated View
13325510 8 3341 1906 +1435 Titan Relay View
13327476 5 3277 1850 +1427 BloXroute Regulated View
13325377 10 3364 1943 +1421 Ultra Sound View
13329196 0 3176 1757 +1419 Aestus View
13325776 5 3265 1850 +1415 BloXroute Regulated View
13324195 10 3356 1943 +1413 Ultra Sound View
13324724 3 3222 1813 +1409 BloXroute Max Profit View
13327456 4 3239 1832 +1407 Ultra Sound View
13327850 8 3309 1906 +1403 BloXroute Max Profit View
13328092 3 3216 1813 +1403 BloXroute Regulated View
13329857 0 3158 1757 +1401 Ultra Sound View
13325346 5 3250 1850 +1400 Ultra Sound View
13326527 9 3324 1925 +1399 Titan Relay View
13330168 1 3175 1776 +1399 BloXroute Max Profit View
13327676 5 3248 1850 +1398 Ultra Sound View
13324965 10 3331 1943 +1388 Titan Relay View
13325532 3 3200 1813 +1387 Ultra Sound View
13326708 2 3178 1794 +1384 Ultra Sound View
13328096 11 3344 1962 +1382 Ultra Sound View
13328014 6 3251 1869 +1382 Ultra Sound View
13327215 9 3301 1925 +1376 BloXroute Regulated View
13325371 3 3189 1813 +1376 BloXroute Max Profit View
13325238 1 3150 1776 +1374 BloXroute Regulated View
13325671 3 3184 1813 +1371 Aestus View
13326442 10 3312 1943 +1369 Ultra Sound View
13323723 1 3144 1776 +1368 BloXroute Regulated View
13329537 2 3161 1794 +1367 Ultra Sound View
13326260 3 3175 1813 +1362 Ultra Sound View
13329582 0 3119 1757 +1362 BloXroute Max Profit View
13325344 14 3375 2018 +1357 Ultra Sound View
13329241 6 3226 1869 +1357 Ultra Sound View
13324274 0 3112 1757 +1355 Aestus View
13328190 3 3167 1813 +1354 Aestus View
13326732 0 3111 1757 +1354 Titan Relay View
13330631 3 3162 1813 +1349 Aestus View
13329413 0 3106 1757 +1349 Titan Relay View
13327736 0 3104 1757 +1347 BloXroute Max Profit View
13325879 6 3214 1869 +1345 Ultra Sound View
13328091 3 3158 1813 +1345 Ultra Sound View
13326272 1 3120 1776 +1344 EthGas View
13329209 0 3101 1757 +1344 BloXroute Max Profit View
13329852 5 3193 1850 +1343 BloXroute Max Profit View
13326701 3 3155 1813 +1342 Ultra Sound View
13324104 1 3116 1776 +1340 Ultra Sound View
13330524 0 3097 1757 +1340 Ultra Sound View
13325918 0 3096 1757 +1339 Agnostic Gnosis View
13327514 1 3114 1776 +1338 BloXroute Regulated View
13327063 0 3093 1757 +1336 Ultra Sound View
13330454 1 3111 1776 +1335 Flashbots View
13329853 0 3092 1757 +1335 BloXroute Max Profit View
13327246 0 3092 1757 +1335 Flashbots View
13328411 9 3259 1925 +1334 BloXroute Max Profit View
13329049 1 3110 1776 +1334 BloXroute Max Profit View
13327706 0 3091 1757 +1334 Aestus View
13327991 5 3182 1850 +1332 Agnostic Gnosis View
13329891 1 3103 1776 +1327 Aestus View
13323938 3 3139 1813 +1326 BloXroute Max Profit View
13326980 0 3083 1757 +1326 BloXroute Max Profit View
13328885 0 3080 1757 +1323 Flashbots View
13324118 0 3080 1757 +1323 Ultra Sound View
13326050 3 3135 1813 +1322 Agnostic Gnosis View
13324561 3 3133 1813 +1320 Ultra Sound View
13324548 1 3095 1776 +1319 BloXroute Regulated View
13325410 1 3094 1776 +1318 Ultra Sound View
13326453 8 3219 1906 +1313 Ultra Sound View
13323866 0 3068 1757 +1311 Ultra Sound View
13323614 5 3160 1850 +1310 BloXroute Max Profit View
13327180 1 3084 1776 +1308 BloXroute Regulated View
13324316 0 3065 1757 +1308 Ultra Sound View
13328410 0 3064 1757 +1307 Ultra Sound View
13328844 0 3062 1757 +1305 BloXroute Regulated View
13327322 1 3080 1776 +1304 Ultra Sound View
13327950 7 3191 1887 +1304 Ultra Sound View
13330608 4 3135 1832 +1303 Ultra Sound View
13325381 0 3060 1757 +1303 BloXroute Max Profit View
13328898 1 3078 1776 +1302 BloXroute Max Profit View
13330735 0 3059 1757 +1302 Titan Relay View
13324311 11 3263 1962 +1301 Agnostic Gnosis View
13330438 6 3170 1869 +1301 Agnostic Gnosis View
13330280 0 3056 1757 +1299 Local View
13326761 0 3056 1757 +1299 Aestus View
13327584 0 3055 1757 +1298 Agnostic Gnosis View
13327086 7 3185 1887 +1298 BloXroute Max Profit View
13326676 5 3146 1850 +1296 Ultra Sound View
13325713 0 3053 1757 +1296 Ultra Sound View
13326107 0 3052 1757 +1295 Titan Relay View
13325882 13 3293 1999 +1294 Aestus View
13329134 3 3105 1813 +1292 BloXroute Max Profit View
13328419 5 3140 1850 +1290 Titan Relay View
13329664 0 3047 1757 +1290 Titan Relay View
13327624 0 3047 1757 +1290 BloXroute Regulated View
13328521 5 3137 1850 +1287 Ultra Sound View
13329977 5 3137 1850 +1287 BloXroute Max Profit View
13326141 3 3099 1813 +1286 BloXroute Regulated View
13327467 5 3136 1850 +1286 BloXroute Max Profit View
13330431 2 3080 1794 +1286 Flashbots View
13323693 0 3042 1757 +1285 BloXroute Regulated View
13325842 0 3041 1757 +1284 BloXroute Max Profit View
13323974 3 3095 1813 +1282 BloXroute Max Profit View
13327501 1 3057 1776 +1281 Flashbots View
13328764 13 3279 1999 +1280 BloXroute Max Profit View
13328218 8 3186 1906 +1280 BloXroute Max Profit View
13327954 10 3223 1943 +1280 BloXroute Max Profit View
13327780 0 3037 1757 +1280 BloXroute Max Profit View
13325167 0 3035 1757 +1278 Ultra Sound View
13324002 1 3052 1776 +1276 BloXroute Regulated View
13327669 1 3052 1776 +1276 BloXroute Max Profit View
13329103 0 3033 1757 +1276 BloXroute Max Profit View
13329091 3 3088 1813 +1275 Flashbots View
13323944 1 3050 1776 +1274 Ultra Sound View
13326684 5 3123 1850 +1273 Ultra Sound View
13329249 9 3197 1925 +1272 Ultra Sound View
13324592 1 3048 1776 +1272 BloXroute Max Profit View
13324851 2 3066 1794 +1272 BloXroute Max Profit View
13326360 1 3046 1776 +1270 Flashbots View
13327166 3 3083 1813 +1270 Aestus View
13330622 3 3083 1813 +1270 BloXroute Max Profit View
13326800 0 3027 1757 +1270 Flashbots View
13324295 0 3027 1757 +1270 BloXroute Max Profit View
13327552 1 3045 1776 +1269 Flashbots View
13327208 0 3024 1757 +1267 BloXroute Max Profit View
13329473 8 3172 1906 +1266 Ultra Sound View
13328317 0 3023 1757 +1266 Flashbots View
13328677 0 3022 1757 +1265 Ultra Sound View
13330703 0 3018 1757 +1261 BloXroute Regulated View
13324767 1 3036 1776 +1260 BloXroute Max Profit View
13327214 0 3016 1757 +1259 BloXroute Max Profit View
13330745 0 3016 1757 +1259 BloXroute Max Profit View
13328434 0 3015 1757 +1258 Aestus View
13325577 10 3200 1943 +1257 BloXroute Max Profit View
13323812 0 3014 1757 +1257 Aestus View
13328642 0 3014 1757 +1257 Flashbots View
13327403 8 3162 1906 +1256 BloXroute Regulated View
13326953 0 3013 1757 +1256 BloXroute Max Profit View
13327694 1 3030 1776 +1254 BloXroute Max Profit View
13328854 0 3011 1757 +1254 Titan Relay View
13329236 0 3010 1757 +1253 Ultra Sound View
13325802 7 3139 1887 +1252 BloXroute Regulated View
13329520 6 3120 1869 +1251 BloXroute Max Profit View
13326935 3 3064 1813 +1251 Ultra Sound View
13324566 8 3156 1906 +1250 Flashbots View
13325215 0 3007 1757 +1250 BloXroute Max Profit View
13330435 11 3211 1962 +1249 BloXroute Regulated View
13324802 6 3118 1869 +1249 BloXroute Max Profit View
13328886 8 3155 1906 +1249 Ultra Sound View
13324462 5 3099 1850 +1249 Titan Relay View
13325383 0 3006 1757 +1249 BloXroute Max Profit View
13329587 7 3136 1887 +1249 BloXroute Max Profit View
13330507 6 3117 1869 +1248 Ultra Sound View
13326897 2 3040 1794 +1246 Flashbots View
13327024 4 3077 1832 +1245 Agnostic Gnosis View
13328079 3 3057 1813 +1244 BloXroute Max Profit View
13324908 0 3001 1757 +1244 BloXroute Regulated View
13324861 3 3056 1813 +1243 BloXroute Max Profit View
13325948 5 3092 1850 +1242 Agnostic Gnosis View
13324062 5 3090 1850 +1240 Ultra Sound View
13330722 0 2997 1757 +1240 BloXroute Regulated View
13327178 0 2996 1757 +1239 Ultra Sound View
13324501 10 3180 1943 +1237 Ultra Sound View
13329509 6 3105 1869 +1236 Ultra Sound View
13330148 0 2992 1757 +1235 BloXroute Max Profit View
13329556 13 3227 1999 +1228 BloXroute Max Profit View
13329988 6 3096 1869 +1227 Ultra Sound View
13324782 2 3021 1794 +1227 Flashbots View
13330760 5 3076 1850 +1226 BloXroute Max Profit View
13329945 5 3076 1850 +1226 Flashbots View
13323854 5 3075 1850 +1225 BloXroute Max Profit View
13327701 4 3056 1832 +1224 Agnostic Gnosis View
13324323 4 3056 1832 +1224 Ultra Sound View
13327288 4 3056 1832 +1224 Ultra Sound View
13328391 2 3018 1794 +1224 Flashbots View
13328403 6 3091 1869 +1222 BloXroute Regulated View
13324628 5 3072 1850 +1222 Agnostic Gnosis View
13330081 12 3201 1980 +1221 BloXroute Max Profit View
13327770 5 3069 1850 +1219 Ultra Sound View
13324589 6 3087 1869 +1218 BloXroute Max Profit View
13325391 5 3068 1850 +1218 Titan Relay View
13327339 2 3012 1794 +1218 Ultra Sound View
13326197 8 3123 1906 +1217 Ultra Sound View
Total anomalies: 280

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})