Mon, Jan 5, 2026

Propagation anomalies - 2026-01-05

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-05' AND slot_start_date_time < '2026-01-05'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-05' AND slot_start_date_time < '2026-01-05'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-05' AND slot_start_date_time < '2026-01-05'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-05' AND slot_start_date_time < '2026-01-05'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-05' AND slot_start_date_time < '2026-01-05'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-05' AND slot_start_date_time < '2026-01-05'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-05' AND slot_start_date_time < '2026-01-05'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-05' AND slot_start_date_time < '2026-01-05'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,170
MEV blocks: 6,712 (93.6%)
Local blocks: 458 (6.4%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1744.7 + 19.94 × blob_count (R² = 0.015)
Residual σ = 613.3ms
Anomalies (>2σ slow): 310 (4.3%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13401728 8 4956 1904 +3052 Local View
13398944 0 4753 1745 +3008 Local View
13396033 0 4100 1745 +2355 Local View
13396318 8 4099 1904 +2195 Local View
13401780 0 3921 1745 +2176 Local View
13400596 0 3912 1745 +2167 Local View
13402580 0 3900 1745 +2155 Local View
13396869 0 3883 1745 +2138 Local View
13401080 0 3877 1745 +2132 Local View
13400364 0 3805 1745 +2060 Local View
13396416 3 3739 1805 +1934 Local View
13395712 0 3655 1745 +1910 Aestus View
13400529 6 3767 1864 +1903 BloXroute Max Profit View
13397723 5 3721 1844 +1877 BloXroute Regulated View
13398496 6 3704 1864 +1840 BloXroute Regulated View
13396271 5 3673 1844 +1829 Titan Relay View
13401409 6 3680 1864 +1816 BloXroute Regulated View
13397863 0 3543 1745 +1798 Ultra Sound View
13397437 1 3558 1765 +1793 BloXroute Max Profit View
13397760 1 3555 1765 +1790 BloXroute Regulated View
13400263 5 3632 1844 +1788 BloXroute Regulated View
13398731 0 3527 1745 +1782 Titan Relay View
13398236 1 3541 1765 +1776 BloXroute Regulated View
13395923 5 3614 1844 +1770 BloXroute Max Profit View
13401634 4 3586 1824 +1762 BloXroute Regulated View
13397609 6 3619 1864 +1755 Local View
13400739 6 3615 1864 +1751 Ultra Sound View
13401034 0 3495 1745 +1750 Ultra Sound View
13400833 12 3734 1984 +1750 BloXroute Max Profit View
13398372 5 3589 1844 +1745 BloXroute Regulated View
13396811 4 3558 1824 +1734 BloXroute Max Profit View
13396645 5 3575 1844 +1731 Ultra Sound View
13397038 4 3543 1824 +1719 BloXroute Regulated View
13402041 3 3504 1805 +1699 BloXroute Regulated View
13396780 2 3476 1785 +1691 Ultra Sound View
13401185 0 3436 1745 +1691 Ultra Sound View
13401134 10 3628 1944 +1684 Ultra Sound View
13398070 10 3612 1944 +1668 Ultra Sound View
13397886 9 3587 1924 +1663 Ultra Sound View
13398864 3 3458 1805 +1653 Ultra Sound View
13400208 6 3512 1864 +1648 Ultra Sound View
13401704 13 3637 2004 +1633 Ultra Sound View
13401688 1 3389 1765 +1624 Titan Relay View
13395912 9 3546 1924 +1622 Titan Relay View
13401000 14 3642 2024 +1618 Ultra Sound View
13396158 13 3600 2004 +1596 BloXroute Regulated View
13396122 1 3357 1765 +1592 Aestus View
13396112 6 3446 1864 +1582 BloXroute Regulated View
13398284 1 3343 1765 +1578 BloXroute Regulated View
13396410 6 3435 1864 +1571 BloXroute Regulated View
13399847 9 3494 1924 +1570 Ultra Sound View
13401824 2 3347 1785 +1562 Ultra Sound View
13398821 6 3424 1864 +1560 BloXroute Regulated View
13396045 10 3491 1944 +1547 Ultra Sound View
13397134 0 3290 1745 +1545 BloXroute Regulated View
13397276 1 3309 1765 +1544 Local View
13400064 6 3408 1864 +1544 Flashbots View
13399590 9 3463 1924 +1539 Flashbots View
13399530 2 3320 1785 +1535 BloXroute Regulated View
13400356 4 3355 1824 +1531 BloXroute Regulated View
13395857 5 3372 1844 +1528 BloXroute Regulated View
13401747 0 3263 1745 +1518 BloXroute Regulated View
13401374 1 3282 1765 +1517 Titan Relay View
13401795 3 3321 1805 +1516 Titan Relay View
13398095 9 3440 1924 +1516 Ultra Sound View
13401376 6 3380 1864 +1516 Ultra Sound View
13395840 3 3318 1805 +1513 Ultra Sound View
13401094 15 3554 2044 +1510 Titan Relay View
13397421 4 3334 1824 +1510 BloXroute Regulated View
13400096 6 3369 1864 +1505 Ultra Sound View
13400007 0 3247 1745 +1502 Flashbots View
13396016 7 3384 1884 +1500 BloXroute Regulated View
13401003 8 3400 1904 +1496 Ultra Sound View
13400782 0 3238 1745 +1493 EthGas View
13396032 5 3337 1844 +1493 Titan Relay View
13396777 0 3235 1745 +1490 BloXroute Max Profit View
13398391 13 3490 2004 +1486 BloXroute Regulated View
13396259 4 3310 1824 +1486 BloXroute Regulated View
13402635 12 3469 1984 +1485 Agnostic Gnosis View
13397642 2 3268 1785 +1483 Ultra Sound View
13396060 1 3248 1765 +1483 Titan Relay View
13397605 4 3306 1824 +1482 BloXroute Regulated View
13402798 0 3225 1745 +1480 Titan Relay View
13401499 11 3443 1964 +1479 EthGas View
13399115 8 3374 1904 +1470 BloXroute Regulated View
13400903 1 3233 1765 +1468 BloXroute Max Profit View
13399179 10 3410 1944 +1466 BloXroute Regulated View
13401882 2 3248 1785 +1463 BloXroute Regulated View
13397506 5 3302 1844 +1458 BloXroute Max Profit View
13397761 7 3341 1884 +1457 Titan Relay View
13400800 6 3317 1864 +1453 BloXroute Max Profit View
13400703 10 3395 1944 +1451 Titan Relay View
13401116 11 3414 1964 +1450 Ultra Sound View
13397077 10 3392 1944 +1448 EthGas View
13401014 3 3250 1805 +1445 BloXroute Regulated View
13401366 9 3369 1924 +1445 Titan Relay View
13400220 7 3328 1884 +1444 Ultra Sound View
13396096 12 3427 1984 +1443 Titan Relay View
13399499 7 3324 1884 +1440 BloXroute Max Profit View
13397215 6 3304 1864 +1440 Titan Relay View
13399276 9 3363 1924 +1439 Ultra Sound View
13400579 4 3261 1824 +1437 Ultra Sound View
13397817 10 3377 1944 +1433 Titan Relay View
13402106 5 3277 1844 +1433 Titan Relay View
13400889 8 3336 1904 +1432 Ultra Sound View
13401756 0 3175 1745 +1430 Ultra Sound View
13396910 10 3372 1944 +1428 Ultra Sound View
13396168 9 3351 1924 +1427 BloXroute Regulated View
13395802 7 3311 1884 +1427 Titan Relay View
13400549 2 3210 1785 +1425 BloXroute Max Profit View
13399143 7 3308 1884 +1424 BloXroute Regulated View
13401554 2 3208 1785 +1423 BloXroute Regulated View
13397280 2 3207 1785 +1422 Ultra Sound View
13397236 11 3386 1964 +1422 BloXroute Regulated View
13396006 8 3323 1904 +1419 Titan Relay View
13401648 6 3283 1864 +1419 Ultra Sound View
13399349 0 3163 1745 +1418 BloXroute Max Profit View
13397646 13 3420 2004 +1416 BloXroute Regulated View
13397668 6 3277 1864 +1413 BloXroute Regulated View
13396386 4 3237 1824 +1413 BloXroute Regulated View
13401823 2 3195 1785 +1410 BloXroute Regulated View
13400616 5 3253 1844 +1409 Ultra Sound View
13400279 6 3272 1864 +1408 BloXroute Max Profit View
13401581 6 3270 1864 +1406 BloXroute Max Profit View
13400715 13 3408 2004 +1404 BloXroute Regulated View
13400680 1 3168 1765 +1403 Ultra Sound View
13398016 10 3347 1944 +1403 Ultra Sound View
13395921 7 3282 1884 +1398 BloXroute Regulated View
13399158 2 3179 1785 +1394 Ultra Sound View
13401111 10 3338 1944 +1394 BloXroute Regulated View
13398936 7 3278 1884 +1394 BloXroute Max Profit View
13400571 13 3397 2004 +1393 Ultra Sound View
13399391 9 3317 1924 +1393 BloXroute Regulated View
13401752 4 3217 1824 +1393 Titan Relay View
13401912 8 3292 1904 +1388 BloXroute Regulated View
13402075 15 3429 2044 +1385 BloXroute Regulated View
13402419 2 3169 1785 +1384 Ultra Sound View
13398893 1 3149 1765 +1384 Ultra Sound View
13400570 4 3207 1824 +1383 BloXroute Max Profit View
13401758 0 3125 1745 +1380 Ultra Sound View
13398867 2 3163 1785 +1378 BloXroute Max Profit View
13398722 0 3122 1745 +1377 Ultra Sound View
13399816 4 3201 1824 +1377 BloXroute Max Profit View
13396671 5 3217 1844 +1373 Flashbots View
13402034 13 3374 2004 +1370 BloXroute Regulated View
13397303 9 3291 1924 +1367 Flashbots View
13398813 6 3228 1864 +1364 Ultra Sound View
13402597 0 3108 1745 +1363 BloXroute Max Profit View
13400175 7 3247 1884 +1363 BloXroute Regulated View
13402367 4 3185 1824 +1361 Ultra Sound View
13401309 10 3304 1944 +1360 Titan Relay View
13398892 8 3264 1904 +1360 Agnostic Gnosis View
13399559 6 3223 1864 +1359 BloXroute Max Profit View
13396002 6 3223 1864 +1359 Flashbots View
13399596 1 3122 1765 +1357 BloXroute Max Profit View
13401052 2 3140 1785 +1355 Agnostic Gnosis View
13400548 12 3338 1984 +1354 Ultra Sound View
13399459 1 3116 1765 +1351 Flashbots View
13396646 2 3135 1785 +1350 BloXroute Max Profit View
13400775 13 3354 2004 +1350 Titan Relay View
13400885 10 3294 1944 +1350 BloXroute Regulated View
13398254 6 3213 1864 +1349 Ultra Sound View
13401501 6 3213 1864 +1349 BloXroute Max Profit View
13400024 2 3133 1785 +1348 Aestus View
13400771 0 3092 1745 +1347 Agnostic Gnosis View
13396679 3 3150 1805 +1345 BloXroute Max Profit View
13396226 9 3269 1924 +1345 BloXroute Max Profit View
13398296 2 3128 1785 +1343 Titan Relay View
13396639 2 3128 1785 +1343 Agnostic Gnosis View
13397895 3 3144 1805 +1339 BloXroute Max Profit View
13400956 10 3283 1944 +1339 Ultra Sound View
13399084 6 3203 1864 +1339 Ultra Sound View
13400965 6 3203 1864 +1339 BloXroute Max Profit View
13398877 4 3163 1824 +1339 BloXroute Max Profit View
13398525 8 3242 1904 +1338 BloXroute Regulated View
13399189 3 3142 1805 +1337 Ultra Sound View
13396771 5 3181 1844 +1337 Ultra Sound View
13398897 1 3100 1765 +1335 BloXroute Regulated View
13396748 1 3098 1765 +1333 BloXroute Max Profit View
13400613 14 3356 2024 +1332 BloXroute Max Profit View
13402792 12 3316 1984 +1332 BloXroute Max Profit View
13396920 6 3195 1864 +1331 Ultra Sound View
13401436 4 3155 1824 +1331 Ultra Sound View
13402586 12 3313 1984 +1329 BloXroute Max Profit View
13395904 10 3273 1944 +1329 BloXroute Max Profit View
13398695 9 3253 1924 +1329 BloXroute Max Profit View
13399682 7 3213 1884 +1329 BloXroute Regulated View
13396214 1 3093 1765 +1328 BloXroute Max Profit View
13400987 6 3192 1864 +1328 BloXroute Max Profit View
13396010 9 3250 1924 +1326 BloXroute Max Profit View
13396663 1 3090 1765 +1325 BloXroute Max Profit View
13400169 5 3169 1844 +1325 BloXroute Max Profit View
13400000 6 3188 1864 +1324 Ultra Sound View
13400410 6 3188 1864 +1324 Ultra Sound View
13395729 0 3068 1745 +1323 BloXroute Regulated View
13402761 0 3068 1745 +1323 BloXroute Max Profit View
13398453 7 3206 1884 +1322 Ultra Sound View
13400812 2 3106 1785 +1321 Ultra Sound View
13396050 0 3066 1745 +1321 Agnostic Gnosis View
13398454 1 3083 1765 +1318 Ultra Sound View
13395935 0 3063 1745 +1318 Aestus View
13396261 0 3060 1745 +1315 Titan Relay View
13400721 8 3217 1904 +1313 Ultra Sound View
13402690 7 3196 1884 +1312 Ultra Sound View
13401764 7 3194 1884 +1310 Titan Relay View
13397812 3 3114 1805 +1309 BloXroute Max Profit View
13399303 7 3193 1884 +1309 BloXroute Max Profit View
13398595 6 3173 1864 +1309 EthGas View
13399513 1 3073 1765 +1308 Titan Relay View
13398072 2 3092 1785 +1307 BloXroute Max Profit View
13402378 1 3072 1765 +1307 BloXroute Max Profit View
13396565 7 3191 1884 +1307 BloXroute Max Profit View
13399221 6 3171 1864 +1307 EthGas View
13398632 2 3091 1785 +1306 BloXroute Regulated View
13396089 14 3330 2024 +1306 Titan Relay View
13398443 6 3170 1864 +1306 BloXroute Max Profit View
13402704 3 3110 1805 +1305 BloXroute Max Profit View
13397427 2 3089 1785 +1304 Ultra Sound View
13401092 1 3069 1765 +1304 Titan Relay View
13398263 1 3067 1765 +1302 BloXroute Max Profit View
13399941 7 3186 1884 +1302 BloXroute Max Profit View
13397304 2 3086 1785 +1301 Ultra Sound View
13398062 6 3165 1864 +1301 Ultra Sound View
13397348 0 3045 1745 +1300 Ultra Sound View
13399090 10 3244 1944 +1300 Ultra Sound View
13400107 1 3064 1765 +1299 Ultra Sound View
13397631 6 3159 1864 +1295 BloXroute Max Profit View
13397923 1 3059 1765 +1294 BloXroute Max Profit View
13402508 1 3058 1765 +1293 Flashbots View
13400387 0 3038 1745 +1293 Ultra Sound View
13401065 10 3237 1944 +1293 BloXroute Max Profit View
13399309 7 3177 1884 +1293 Ultra Sound View
13397198 5 3137 1844 +1293 BloXroute Max Profit View
13397847 11 3256 1964 +1292 BloXroute Max Profit View
13398168 6 3154 1864 +1290 BloXroute Max Profit View
13400644 1 3053 1765 +1288 Ultra Sound View
13397041 2 3072 1785 +1287 BloXroute Max Profit View
13397814 6 3151 1864 +1287 BloXroute Max Profit View
13397137 1 3051 1765 +1286 BloXroute Max Profit View
13400357 7 3170 1884 +1286 BloXroute Max Profit View
13400455 4 3109 1824 +1285 BloXroute Max Profit View
13400755 1 3049 1765 +1284 Agnostic Gnosis View
13401848 10 3228 1944 +1284 BloXroute Max Profit View
13398807 3 3088 1805 +1283 Titan Relay View
13402739 1 3048 1765 +1283 BloXroute Max Profit View
13397576 6 3146 1864 +1282 BloXroute Max Profit View
13402530 3 3086 1805 +1281 BloXroute Max Profit View
13397451 5 3124 1844 +1280 BloXroute Max Profit View
13401588 3 3084 1805 +1279 BloXroute Max Profit View
13398059 6 3143 1864 +1279 Ultra Sound View
13401493 6 3143 1864 +1279 Ultra Sound View
13396589 5 3122 1844 +1278 BloXroute Regulated View
13400701 2 3061 1785 +1276 Flashbots View
13395920 1 3041 1765 +1276 Titan Relay View
13398406 1 3039 1765 +1274 BloXroute Max Profit View
13399788 4 3098 1824 +1274 BloXroute Max Profit View
13400555 5 3116 1844 +1272 BloXroute Max Profit View
13401040 9 3195 1924 +1271 Ultra Sound View
13397283 6 3134 1864 +1270 BloXroute Max Profit View
13400879 14 3293 2024 +1269 Ultra Sound View
13399336 10 3211 1944 +1267 Ultra Sound View
13396365 4 3091 1824 +1267 Titan Relay View
13399029 1 3028 1765 +1263 BloXroute Max Profit View
13398015 2 3047 1785 +1262 Flashbots View
13397539 1 3024 1765 +1259 BloXroute Max Profit View
13401397 1 3023 1765 +1258 BloXroute Max Profit View
13399670 1 3023 1765 +1258 Ultra Sound View
13402693 0 3003 1745 +1258 BloXroute Max Profit View
13396972 2 3042 1785 +1257 Flashbots View
13397784 6 3121 1864 +1257 Ultra Sound View
13400623 0 3001 1745 +1256 Aestus View
13400296 0 3001 1745 +1256 BloXroute Max Profit View
13397561 7 3140 1884 +1256 Titan Relay View
13401718 9 3179 1924 +1255 BloXroute Regulated View
13401341 6 3119 1864 +1255 Flashbots View
13400939 6 3119 1864 +1255 BloXroute Regulated View
13401028 8 3158 1904 +1254 Ultra Sound View
13399234 7 3138 1884 +1254 Ultra Sound View
13396682 4 3078 1824 +1254 Agnostic Gnosis View
13401612 12 3237 1984 +1253 BloXroute Regulated View
13395893 9 3177 1924 +1253 BloXroute Max Profit View
13400777 7 3135 1884 +1251 Ultra Sound View
13396998 2 3035 1785 +1250 Ultra Sound View
13400925 0 2995 1745 +1250 Agnostic Gnosis View
13397979 7 3134 1884 +1250 Local View
13401214 5 3094 1844 +1250 Ultra Sound View
13400072 15 3293 2044 +1249 BloXroute Max Profit View
13396489 6 3113 1864 +1249 BloXroute Max Profit View
13396872 0 2993 1745 +1248 Titan Relay View
13400899 11 3211 1964 +1247 Ultra Sound View
13399267 8 3151 1904 +1247 Ultra Sound View
13398306 4 3071 1824 +1247 BloXroute Regulated View
13401455 4 3070 1824 +1246 Ultra Sound View
13399110 3 3049 1805 +1244 Ultra Sound View
13399538 4 3067 1824 +1243 Agnostic Gnosis View
13400880 1 3006 1765 +1241 BloXroute Max Profit View
13398340 9 3165 1924 +1241 Ultra Sound View
13402406 1 3005 1765 +1240 BloXroute Max Profit View
13399030 9 3163 1924 +1239 Ultra Sound View
13401731 8 3143 1904 +1239 Ultra Sound View
13400741 5 3083 1844 +1239 Ultra Sound View
13400280 9 3162 1924 +1238 Ultra Sound View
13402385 6 3102 1864 +1238 BloXroute Regulated View
13398535 10 3181 1944 +1237 Ultra Sound View
13396516 10 3181 1944 +1237 BloXroute Max Profit View
13402355 1 2999 1765 +1234 Ultra Sound View
13397371 1 2999 1765 +1234 Ultra Sound View
13399986 5 3077 1844 +1233 Aestus View
13399884 0 2976 1745 +1231 Ultra Sound View
13400078 0 2974 1745 +1229 BloXroute Max Profit View
Total anomalies: 310

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})