Sun, Jan 4, 2026

Propagation anomalies - 2026-01-04

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-04' AND slot_start_date_time < '2026-01-04'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-04' AND slot_start_date_time < '2026-01-04'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-04' AND slot_start_date_time < '2026-01-04'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-04' AND slot_start_date_time < '2026-01-04'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-04' AND slot_start_date_time < '2026-01-04'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-04' AND slot_start_date_time < '2026-01-04'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-04' AND slot_start_date_time < '2026-01-04'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-04' AND slot_start_date_time < '2026-01-04'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,183
MEV blocks: 6,691 (93.2%)
Local blocks: 492 (6.8%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1742.0 + 23.92 × blob_count (R² = 0.020)
Residual σ = 627.7ms
Anomalies (>2σ slow): 269 (3.7%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13394464 0 5473 1742 +3731 Local View
13389664 0 5137 1742 +3395 Local View
13394611 0 4711 1742 +2969 Local View
13391328 0 4593 1742 +2851 Local View
13395336 0 4592 1742 +2850 Local View
13395168 0 4366 1742 +2624 Local View
13395040 0 4328 1742 +2586 Local View
13394731 0 4099 1742 +2357 Local View
13393087 3 4141 1814 +2327 Local View
13393152 0 3919 1742 +2177 Local View
13393149 0 3912 1742 +2170 Local View
13388736 8 4103 1933 +2170 Local View
13392487 0 3811 1742 +2069 Local View
13392479 14 4138 2077 +2061 EthGas View
13394905 3 3840 1814 +2026 Ultra Sound View
13388589 0 3712 1742 +1970 Local View
13392363 2 3732 1790 +1942 BloXroute Max Profit View
13392856 5 3802 1862 +1940 Titan Relay View
13389312 11 3943 2005 +1938 BloXroute Regulated View
13392704 1 3674 1766 +1908 Ultra Sound View
13390444 1 3651 1766 +1885 Ultra Sound View
13388992 7 3794 1909 +1885 BloXroute Max Profit View
13391880 14 3927 2077 +1850 Titan Relay View
13390621 4 3683 1838 +1845 Titan Relay View
13388462 1 3608 1766 +1842 Ultra Sound View
13394054 1 3607 1766 +1841 Ultra Sound View
13391857 11 3844 2005 +1839 Ultra Sound View
13391916 9 3795 1957 +1838 Titan Relay View
13391242 4 3674 1838 +1836 Ultra Sound View
13394562 0 3552 1742 +1810 BloXroute Regulated View
13390490 1 3568 1766 +1802 Ultra Sound View
13388705 4 3635 1838 +1797 BloXroute Regulated View
13393580 1 3554 1766 +1788 Ultra Sound View
13388537 1 3551 1766 +1785 BloXroute Regulated View
13392386 1 3551 1766 +1785 BloXroute Regulated View
13391261 0 3522 1742 +1780 Ultra Sound View
13395143 6 3665 1886 +1779 BloXroute Regulated View
13391011 2 3566 1790 +1776 Ultra Sound View
13393322 6 3636 1886 +1750 Titan Relay View
13395273 7 3654 1909 +1745 Titan Relay View
13390240 7 3652 1909 +1743 Ultra Sound View
13389242 2 3524 1790 +1734 Ultra Sound View
13388782 6 3618 1886 +1732 Titan Relay View
13392182 1 3496 1766 +1730 BloXroute Regulated View
13392844 6 3614 1886 +1728 Ultra Sound View
13390445 6 3610 1886 +1724 Titan Relay View
13395300 0 3463 1742 +1721 Ultra Sound View
13394028 3 3532 1814 +1718 Ultra Sound View
13392711 8 3640 1933 +1707 Ultra Sound View
13395144 4 3542 1838 +1704 Ultra Sound View
13394296 5 3564 1862 +1702 Ultra Sound View
13389903 11 3707 2005 +1702 BloXroute Max Profit View
13391151 4 3537 1838 +1699 BloXroute Max Profit View
13390280 2 3484 1790 +1694 Ultra Sound View
13392051 8 3617 1933 +1684 Local View
13389526 1 3432 1766 +1666 Local View
13393824 0 3397 1742 +1655 Titan Relay View
13391526 1 3417 1766 +1651 Ultra Sound View
13392424 4 3485 1838 +1647 BloXroute Regulated View
13392082 2 3426 1790 +1636 Ultra Sound View
13392634 8 3560 1933 +1627 Ultra Sound View
13388814 7 3535 1909 +1626 Ultra Sound View
13393180 1 3389 1766 +1623 Ultra Sound View
13392640 2 3410 1790 +1620 BloXroute Max Profit View
13392697 3 3428 1814 +1614 BloXroute Max Profit View
13390750 9 3559 1957 +1602 Ultra Sound View
13393548 10 3581 1981 +1600 Ultra Sound View
13393361 8 3521 1933 +1588 BloXroute Max Profit View
13388424 2 3374 1790 +1584 BloXroute Regulated View
13393226 1 3339 1766 +1573 Titan Relay View
13391163 8 3500 1933 +1567 Ultra Sound View
13394395 0 3296 1742 +1554 Local View
13391085 11 3557 2005 +1552 BloXroute Regulated View
13390752 10 3531 1981 +1550 Ultra Sound View
13392812 7 3455 1909 +1546 Ultra Sound View
13393444 1 3307 1766 +1541 BloXroute Regulated View
13388893 1 3292 1766 +1526 BloXroute Regulated View
13390410 8 3457 1933 +1524 BloXroute Max Profit View
13390027 7 3432 1909 +1523 BloXroute Regulated View
13390171 4 3349 1838 +1511 Ultra Sound View
13390987 1 3276 1766 +1510 Ultra Sound View
13395543 6 3385 1886 +1499 Ultra Sound View
13391285 5 3351 1862 +1489 BloXroute Regulated View
13390517 2 3279 1790 +1489 BloXroute Regulated View
13390701 4 3326 1838 +1488 BloXroute Regulated View
13392598 6 3365 1886 +1479 Local View
13394967 6 3364 1886 +1478 BloXroute Regulated View
13393084 6 3360 1886 +1474 Titan Relay View
13388556 13 3526 2053 +1473 Ultra Sound View
13394392 6 3358 1886 +1472 BloXroute Regulated View
13394409 4 3310 1838 +1472 BloXroute Regulated View
13389200 3 3284 1814 +1470 BloXroute Regulated View
13394196 1 3236 1766 +1470 BloXroute Regulated View
13393857 1 3230 1766 +1464 Ultra Sound View
13389960 0 3205 1742 +1463 BloXroute Regulated View
13392568 10 3440 1981 +1459 BloXroute Max Profit View
13393531 9 3415 1957 +1458 Ultra Sound View
13390135 1 3216 1766 +1450 BloXroute Regulated View
13392652 9 3407 1957 +1450 Ultra Sound View
13391392 8 3381 1933 +1448 Ultra Sound View
13391432 6 3330 1886 +1444 Titan Relay View
13394108 5 3304 1862 +1442 Ultra Sound View
13390270 9 3397 1957 +1440 Agnostic Gnosis View
13392977 10 3420 1981 +1439 Local View
13392953 8 3371 1933 +1438 BloXroute Regulated View
13390348 3 3247 1814 +1433 Local View
13393268 0 3174 1742 +1432 Aestus View
13391363 4 3269 1838 +1431 Ultra Sound View
13389217 1 3196 1766 +1430 Titan Relay View
13390368 6 3312 1886 +1426 Ultra Sound View
13395280 2 3216 1790 +1426 Aestus View
13393107 8 3358 1933 +1425 Ultra Sound View
13394061 13 3477 2053 +1424 Ultra Sound View
13392574 6 3308 1886 +1422 Titan Relay View
13395054 2 3211 1790 +1421 BloXroute Regulated View
13391433 0 3163 1742 +1421 Ultra Sound View
13389857 7 3329 1909 +1420 BloXroute Regulated View
13390009 8 3351 1933 +1418 BloXroute Regulated View
13395011 0 3158 1742 +1416 BloXroute Regulated View
13391760 1 3181 1766 +1415 Flashbots View
13393275 8 3346 1933 +1413 Titan Relay View
13388451 0 3153 1742 +1411 BloXroute Regulated View
13388554 1 3176 1766 +1410 Ultra Sound View
13388798 1 3175 1766 +1409 Ultra Sound View
13393747 1 3174 1766 +1408 Flashbots View
13395276 6 3293 1886 +1407 Titan Relay View
13392114 1 3172 1766 +1406 Ultra Sound View
13390037 0 3141 1742 +1399 Ultra Sound View
13391641 13 3450 2053 +1397 BloXroute Regulated View
13395532 8 3328 1933 +1395 BloXroute Regulated View
13391881 7 3303 1909 +1394 Titan Relay View
13391906 6 3279 1886 +1393 Titan Relay View
13390243 4 3228 1838 +1390 BloXroute Regulated View
13391399 7 3298 1909 +1389 BloXroute Regulated View
13391014 1 3154 1766 +1388 BloXroute Regulated View
13389604 4 3224 1838 +1386 BloXroute Regulated View
13390649 1 3151 1766 +1385 BloXroute Regulated View
13395389 13 3438 2053 +1385 BloXroute Regulated View
13390574 4 3221 1838 +1383 BloXroute Regulated View
13390825 6 3265 1886 +1379 BloXroute Max Profit View
13392567 2 3169 1790 +1379 BloXroute Regulated View
13390349 6 3264 1886 +1378 Titan Relay View
13392510 9 3334 1957 +1377 Ultra Sound View
13394509 10 3357 1981 +1376 BloXroute Regulated View
13395290 2 3165 1790 +1375 BloXroute Regulated View
13389976 8 3307 1933 +1374 BloXroute Regulated View
13388619 2 3162 1790 +1372 BloXroute Regulated View
13389611 6 3254 1886 +1368 BloXroute Regulated View
13391478 6 3254 1886 +1368 Ultra Sound View
13391095 4 3202 1838 +1364 BloXroute Regulated View
13393890 7 3273 1909 +1364 Titan Relay View
13391831 1 3127 1766 +1361 BloXroute Max Profit View
13390176 10 3342 1981 +1361 BloXroute Max Profit View
13394358 5 3222 1862 +1360 BloXroute Max Profit View
13391680 10 3340 1981 +1359 Ultra Sound View
13393291 2 3148 1790 +1358 Agnostic Gnosis View
13395465 1 3124 1766 +1358 Flashbots View
13394309 3 3171 1814 +1357 Ultra Sound View
13394329 5 3216 1862 +1354 BloXroute Max Profit View
13388405 1 3119 1766 +1353 Titan Relay View
13392441 5 3214 1862 +1352 BloXroute Regulated View
13395175 1 3115 1766 +1349 BloXroute Max Profit View
13389485 0 3090 1742 +1348 Ultra Sound View
13391016 10 3327 1981 +1346 BloXroute Regulated View
13388504 5 3207 1862 +1345 Ultra Sound View
13392559 6 3230 1886 +1344 Ultra Sound View
13392695 4 3182 1838 +1344 BloXroute Max Profit View
13388491 4 3181 1838 +1343 Ultra Sound View
13393426 1 3109 1766 +1343 Flashbots View
13389712 11 3345 2005 +1340 BloXroute Regulated View
13389428 11 3343 2005 +1338 Titan Relay View
13388947 4 3175 1838 +1337 Ultra Sound View
13394661 6 3222 1886 +1336 BloXroute Max Profit View
13392256 2 3122 1790 +1332 Aestus View
13395310 1 3098 1766 +1332 Ultra Sound View
13389174 0 3074 1742 +1332 BloXroute Max Profit View
13394989 1 3096 1766 +1330 BloXroute Max Profit View
13391284 4 3167 1838 +1329 Titan Relay View
13390060 3 3143 1814 +1329 Ultra Sound View
13392449 3 3143 1814 +1329 Ultra Sound View
13388605 1 3095 1766 +1329 BloXroute Max Profit View
13393430 6 3214 1886 +1328 BloXroute Max Profit View
13394429 3 3142 1814 +1328 Ultra Sound View
13394335 1 3092 1766 +1326 BloXroute Max Profit View
13395445 6 3211 1886 +1325 BloXroute Max Profit View
13392942 12 3354 2029 +1325 Titan Relay View
13394041 7 3234 1909 +1325 BloXroute Max Profit View
13395418 6 3210 1886 +1324 BloXroute Max Profit View
13392072 5 3186 1862 +1324 BloXroute Max Profit View
13390081 5 3186 1862 +1324 Titan Relay View
13394952 4 3162 1838 +1324 BloXroute Max Profit View
13391120 6 3206 1886 +1320 Ultra Sound View
13389950 4 3158 1838 +1320 Ultra Sound View
13389589 1 3084 1766 +1318 BloXroute Max Profit View
13394821 1 3082 1766 +1316 BloXroute Max Profit View
13395456 9 3272 1957 +1315 Ultra Sound View
13393138 10 3295 1981 +1314 BloXroute Max Profit View
13394558 1 3079 1766 +1313 BloXroute Max Profit View
13388813 12 3342 2029 +1313 BloXroute Regulated View
13392806 4 3150 1838 +1312 BloXroute Max Profit View
13395563 1 3076 1766 +1310 Titan Relay View
13391308 4 3147 1838 +1309 Ultra Sound View
13394610 12 3338 2029 +1309 Ultra Sound View
13393928 6 3194 1886 +1308 BloXroute Max Profit View
13391025 5 3169 1862 +1307 BloXroute Max Profit View
13393754 12 3336 2029 +1307 Titan Relay View
13395448 7 3216 1909 +1307 BloXroute Max Profit View
13394281 5 3168 1862 +1306 Local View
13388447 12 3335 2029 +1306 Titan Relay View
13391846 5 3167 1862 +1305 BloXroute Max Profit View
13394221 7 3214 1909 +1305 Ultra Sound View
13391246 1 3069 1766 +1303 Ultra Sound View
13389803 0 3045 1742 +1303 Flashbots View
13392552 1 3068 1766 +1302 Ultra Sound View
13393132 0 3044 1742 +1302 Agnostic Gnosis View
13392471 7 3211 1909 +1302 Ultra Sound View
13395043 6 3186 1886 +1300 BloXroute Regulated View
13391684 1 3066 1766 +1300 Ultra Sound View
13394278 1 3065 1766 +1299 BloXroute Max Profit View
13393949 7 3208 1909 +1299 EthGas View
13394274 1 3064 1766 +1298 Titan Relay View
13394291 6 3182 1886 +1296 BloXroute Max Profit View
13390127 2 3086 1790 +1296 Ultra Sound View
13392769 0 3038 1742 +1296 Agnostic Gnosis View
13394184 5 3157 1862 +1295 BloXroute Max Profit View
13391629 1 3061 1766 +1295 Titan Relay View
13390756 0 3037 1742 +1295 Agnostic Gnosis View
13390207 1 3060 1766 +1294 Ultra Sound View
13390776 5 3155 1862 +1293 Ultra Sound View
13390114 1 3059 1766 +1293 Ultra Sound View
13389802 0 3034 1742 +1292 BloXroute Max Profit View
13394114 2 3078 1790 +1288 BloXroute Max Profit View
13391395 1 3052 1766 +1286 Flashbots View
13389542 2 3075 1790 +1285 Ultra Sound View
13394744 1 3050 1766 +1284 Ultra Sound View
13388587 3 3097 1814 +1283 BloXroute Max Profit View
13395286 2 3071 1790 +1281 BloXroute Max Profit View
13389806 2 3070 1790 +1280 BloXroute Max Profit View
13390507 4 3116 1838 +1278 BloXroute Max Profit View
13395321 12 3306 2029 +1277 Ultra Sound View
13391719 1 3042 1766 +1276 Ultra Sound View
13395208 6 3161 1886 +1275 BloXroute Max Profit View
13389034 5 3137 1862 +1275 BloXroute Max Profit View
13391928 10 3256 1981 +1275 Ultra Sound View
13393945 1 3040 1766 +1274 Titan Relay View
13394522 4 3111 1838 +1273 Ultra Sound View
13393947 4 3110 1838 +1272 BloXroute Max Profit View
13393217 1 3037 1766 +1271 Ultra Sound View
13388785 0 3012 1742 +1270 BloXroute Max Profit View
13392996 1 3035 1766 +1269 BloXroute Max Profit View
13391731 3 3082 1814 +1268 Ultra Sound View
13393935 8 3201 1933 +1268 Ultra Sound View
13393726 5 3129 1862 +1267 BloXroute Max Profit View
13393206 9 3224 1957 +1267 Ultra Sound View
13395312 1 3032 1766 +1266 Ultra Sound View
13389736 14 3342 2077 +1265 Titan Relay View
13393090 9 3222 1957 +1265 BloXroute Regulated View
13390057 4 3101 1838 +1263 Ultra Sound View
13395181 1 3028 1766 +1262 Ultra Sound View
13393538 11 3267 2005 +1262 Titan Relay View
13393941 2 3051 1790 +1261 BloXroute Max Profit View
13395014 11 3266 2005 +1261 BloXroute Max Profit View
13394154 7 3169 1909 +1260 Ultra Sound View
13394841 6 3145 1886 +1259 BloXroute Max Profit View
13394887 4 3097 1838 +1259 BloXroute Max Profit View
13392303 8 3192 1933 +1259 Ultra Sound View
13392566 7 3167 1909 +1258 BloXroute Max Profit View
13393723 10 3238 1981 +1257 BloXroute Max Profit View
13394725 9 3213 1957 +1256 BloXroute Max Profit View
Total anomalies: 269

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})