Sun, Jan 11, 2026

Propagation anomalies - 2026-01-11

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-11' AND slot_start_date_time < '2026-01-11'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-11' AND slot_start_date_time < '2026-01-11'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-11' AND slot_start_date_time < '2026-01-11'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-11' AND slot_start_date_time < '2026-01-11'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-11' AND slot_start_date_time < '2026-01-11'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-11' AND slot_start_date_time < '2026-01-11'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-11' AND slot_start_date_time < '2026-01-11'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-11' AND slot_start_date_time < '2026-01-11'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,178
MEV blocks: 6,676 (93.0%)
Local blocks: 502 (7.0%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1771.3 + 22.69 × blob_count (R² = 0.018)
Residual σ = 622.2ms
Anomalies (>2σ slow): 267 (3.7%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13439264 0 7509 1771 +5738 Local Local
13440224 0 4210 1771 +2439 upbit Local Local
13440583 0 4156 1771 +2385 ether.fi Local Local
13445077 0 4080 1771 +2309 rocketpool Local Local
13439269 0 4064 1771 +2293 Local Local
13440576 0 4041 1771 +2270 Local Local
13440288 13 4234 2066 +2168 upbit Local Local
13439415 0 3921 1771 +2150 lido Local Local
13445969 0 3890 1771 +2119 abyss_finance Local Local
13441495 1 3831 1794 +2037 lido 0x8527d16c... Ultra Sound
13440377 4 3884 1862 +2022 stakely_lido 0x8db2a99d... Flashbots
13440356 1 3693 1794 +1899 0x88a53ec4... BloXroute Regulated
13443207 3 3713 1839 +1874 whale_0xba8f Local Local
13444540 4 3725 1862 +1863 0xb26f9666... EthGas
13445977 1 3633 1794 +1839 revolut 0x853b0078... Titan Relay
13442610 1 3614 1794 +1820 blockdaemon_lido 0x88857150... Ultra Sound
13439765 4 3665 1862 +1803 blockdaemon 0xb26f9666... Titan Relay
13444929 7 3715 1930 +1785 revolut 0x850b00e0... BloXroute Regulated
13444183 1 3574 1794 +1780 ether.fi 0x8527d16c... Ultra Sound
13442583 5 3654 1885 +1769 lido Local Local
13443350 6 3665 1907 +1758 0x8527d16c... Ultra Sound
13443559 1 3538 1794 +1744 ether.fi 0x8527d16c... Ultra Sound
13445419 1 3535 1794 +1741 ether.fi 0x8527d16c... Ultra Sound
13443759 0 3495 1771 +1724 0x8527d16c... Ultra Sound
13445196 4 3584 1862 +1722 0x8527d16c... Ultra Sound
13443114 4 3580 1862 +1718 0x8527d16c... Ultra Sound
13444317 5 3594 1885 +1709 chainlayer_lido 0xb26f9666... Titan Relay
13440980 4 3565 1862 +1703 whale_0xdd6c 0xb26f9666... Titan Relay
13444036 11 3720 2021 +1699 0x850b00e0... BloXroute Regulated
13443865 1 3491 1794 +1697 blockdaemon_lido 0x88857150... Ultra Sound
13442488 7 3626 1930 +1696 liquid_collective 0x8527d16c... Ultra Sound
13445329 7 3622 1930 +1692 0x856b0004... Ultra Sound
13440315 11 3710 2021 +1689 abyss_finance 0xb26f9666... Titan Relay
13439972 5 3568 1885 +1683 blockdaemon_lido 0x88857150... Ultra Sound
13443219 2 3498 1817 +1681 blockscape_lido 0x853b0078... Ultra Sound
13444079 0 3438 1771 +1667 ether.fi 0x852b0070... Aestus
13444707 3 3499 1839 +1660 0x8527d16c... Ultra Sound
13440297 5 3544 1885 +1659 whale_0xdd6c 0x8527d16c... Ultra Sound
13445975 6 3555 1907 +1648 blockdaemon 0x8527d16c... Ultra Sound
13439010 8 3600 1953 +1647 blockdaemon 0x8527d16c... Ultra Sound
13445098 0 3416 1771 +1645 Local Local
13445786 0 3415 1771 +1644 Local Local
13439889 9 3612 1976 +1636 revolut 0x8527d16c... Ultra Sound
13442832 9 3611 1976 +1635 ether.fi Local Local
13442911 1 3429 1794 +1635 Local Local
13440446 5 3519 1885 +1634 luno 0x88a53ec4... BloXroute Regulated
13443407 14 3716 2089 +1627 blockdaemon_lido 0xb26f9666... Titan Relay
13445873 3 3464 1839 +1625 csm_operator233_lido Local Local
13439515 5 3509 1885 +1624 revolut 0x856b0004... Ultra Sound
13443045 13 3687 2066 +1621 0x88a53ec4... BloXroute Regulated
13442320 11 3634 2021 +1613 liquid_collective 0x8527d16c... Ultra Sound
13444305 5 3491 1885 +1606 blockdaemon_lido 0x88857150... Ultra Sound
13445719 6 3511 1907 +1604 blockdaemon_lido 0xb67eaa5e... Titan Relay
13445986 2 3410 1817 +1593 ether.fi 0x8527d16c... Ultra Sound
13440188 1 3386 1794 +1592 luno 0x88a53ec4... BloXroute Regulated
13441164 5 3474 1885 +1589 blockdaemon 0x8a850621... Ultra Sound
13443849 0 3357 1771 +1586 0x8527d16c... Ultra Sound
13442496 1 3379 1794 +1585 p2porg 0x856b0004... Agnostic Gnosis
13441035 1 3369 1794 +1575 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13440806 5 3442 1885 +1557 ether.fi 0x8527d16c... Ultra Sound
13443523 0 3328 1771 +1557 blockdaemon 0x926b7905... BloXroute Regulated
13440761 8 3509 1953 +1556 0x853b0078... BloXroute Max Profit
13441917 3 3395 1839 +1556 0x850b00e0... BloXroute Regulated
13441935 3 3392 1839 +1553 blockdaemon 0x850b00e0... BloXroute Regulated
13439760 1 3339 1794 +1545 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13443208 5 3427 1885 +1542 blockdaemon 0xb26f9666... Titan Relay
13441768 4 3404 1862 +1542 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13442200 1 3332 1794 +1538 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13440625 4 3395 1862 +1533 blockdaemon 0x88a53ec4... BloXroute Regulated
13440920 2 3341 1817 +1524 blockdaemon 0x8a850621... Titan Relay
13440112 1 3318 1794 +1524 blockdaemon_lido 0x91b123d8... BloXroute Regulated
13444902 7 3449 1930 +1519 blockdaemon 0x8a850621... Ultra Sound
13439157 10 3517 1998 +1519 0x8527d16c... Ultra Sound
13441700 4 3379 1862 +1517 blockdaemon_lido 0x856b0004... Ultra Sound
13443844 5 3401 1885 +1516 solo_stakers 0x856b0004... Aestus
13441083 3 3351 1839 +1512 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13442138 6 3419 1907 +1512 0xb26f9666... Titan Relay
13445421 1 3297 1794 +1503 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13443754 0 3269 1771 +1498 p2porg 0x852b0070... Ultra Sound
13440203 1 3291 1794 +1497 blockdaemon_lido 0xb26f9666... Titan Relay
13445173 7 3427 1930 +1497 blockdaemon 0x850b00e0... BloXroute Regulated
13439975 0 3268 1771 +1497 luno 0x850b00e0... BloXroute Regulated
13440310 2 3308 1817 +1491 blockdaemon 0x853b0078... Ultra Sound
13438939 3 3329 1839 +1490 0xb26f9666... Titan Relay
13443960 8 3440 1953 +1487 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13439028 6 3385 1907 +1478 blockdaemon 0xb26f9666... Titan Relay
13444261 1 3271 1794 +1477 whale_0xdd6c 0x856b0004... Aestus
13440058 6 3376 1907 +1469 blockdaemon 0x8a850621... Titan Relay
13441602 1 3258 1794 +1464 0xb26f9666... Titan Relay
13444359 1 3254 1794 +1460 blockdaemon 0xb26f9666... Titan Relay
13439868 4 3322 1862 +1460 0x853b0078... Ultra Sound
13441835 0 3231 1771 +1460 revolut 0x91a8729e... BloXroute Regulated
13443611 6 3367 1907 +1460 blockdaemon 0xb26f9666... Titan Relay
13444492 8 3409 1953 +1456 0xb67eaa5e... BloXroute Regulated
13442213 6 3363 1907 +1456 blockdaemon_lido 0xb67eaa5e... Titan Relay
13443152 7 3369 1930 +1439 blockdaemon_lido 0xb67eaa5e... Titan Relay
13444500 4 3300 1862 +1438 blockdaemon_lido 0xb26f9666... Titan Relay
13443491 6 3344 1907 +1437 blockdaemon 0x853b0078... Ultra Sound
13439548 6 3343 1907 +1436 p2porg 0x853b0078... Titan Relay
13443516 6 3343 1907 +1436 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13442080 1 3228 1794 +1434 stakingfacilities_lido 0x823e0146... BloXroute Max Profit
13444423 6 3339 1907 +1432 blockdaemon_lido 0x853b0078... Ultra Sound
13442472 7 3361 1930 +1431 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13441451 8 3383 1953 +1430 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13440835 3 3266 1839 +1427 blockdaemon 0xb26f9666... Titan Relay
13445626 0 3197 1771 +1426 blockdaemon 0x91a8729e... Ultra Sound
13441805 1 3216 1794 +1422 0xb67eaa5e... BloXroute Max Profit
13444192 1 3211 1794 +1417 stakefish 0x88857150... Ultra Sound
13442183 6 3312 1907 +1405 blockdaemon_lido 0xb67eaa5e... Titan Relay
13439147 0 3171 1771 +1400 blockdaemon_lido 0x91a8729e... Ultra Sound
13441479 3 3236 1839 +1397 0x88a53ec4... BloXroute Max Profit
13441088 9 3371 1976 +1395 0xac23f8cc... Flashbots
13442834 5 3279 1885 +1394 whale_0xc541 0x88857150... Ultra Sound
13439897 8 3340 1953 +1387 0x850b00e0... BloXroute Regulated
13443682 11 3408 2021 +1387 p2porg 0x8527d16c... Ultra Sound
13440998 2 3202 1817 +1385 blockdaemon 0x8527d16c... Ultra Sound
13444343 1 3177 1794 +1383 p2porg 0xb7c5e609... Flashbots
13442151 6 3290 1907 +1383 0x88a53ec4... BloXroute Max Profit
13445193 5 3267 1885 +1382 0x850b00e0... BloXroute Regulated
13442014 4 3239 1862 +1377 blockdaemon_lido 0x8527d16c... Ultra Sound
13439584 6 3283 1907 +1376 nethermind_lido 0xa230e2cf... Flashbots
13439442 9 3348 1976 +1372 blockdaemon 0xb26f9666... Titan Relay
13438992 12 3416 2044 +1372 blockdaemon 0x88a53ec4... BloXroute Regulated
13440280 7 3298 1930 +1368 blockdaemon 0xb26f9666... Titan Relay
13443124 3 3206 1839 +1367 whale_0x7791 0xb26f9666... Titan Relay
13439921 5 3251 1885 +1366 0x850b00e0... BloXroute Regulated
13438895 4 3227 1862 +1365 0x850b00e0... BloXroute Regulated
13441270 7 3295 1930 +1365 0x91b123d8... BloXroute Regulated
13445078 0 3134 1771 +1363 0x83d6a6ab... Agnostic Gnosis
13441492 4 3224 1862 +1362 0xb26f9666... BloXroute Regulated
13444227 3 3199 1839 +1360 0x88a53ec4... BloXroute Regulated
13439705 6 3263 1907 +1356 p2porg 0x850b00e0... BloXroute Max Profit
13445608 12 3398 2044 +1354 0x82c466b9... BloXroute Regulated
13439939 9 3328 1976 +1352 blockdaemon 0x88a53ec4... BloXroute Regulated
13444820 1 3145 1794 +1351 p2porg 0x856b0004... Agnostic Gnosis
13443441 13 3416 2066 +1350 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13440363 3 3189 1839 +1350 mantle 0xb67eaa5e... BloXroute Max Profit
13445367 3 3188 1839 +1349 p2porg 0x856b0004... Agnostic Gnosis
13439348 9 3324 1976 +1348 blockdaemon_lido Local Local
13444775 9 3324 1976 +1348 blockdaemon_lido 0x853b0078... Ultra Sound
13445110 0 3118 1771 +1347 0x91a8729e... BloXroute Max Profit
13445835 5 3231 1885 +1346 p2porg 0xb26f9666... BloXroute Max Profit
13439747 1 3140 1794 +1346 everstake 0x856b0004... Aestus
13441178 1 3140 1794 +1346 ether.fi 0xb67eaa5e... BloXroute Regulated
13444460 3 3182 1839 +1343 ether.fi 0xb67eaa5e... EthGas
13443425 1 3136 1794 +1342 everstake 0x88a53ec4... BloXroute Regulated
13445235 2 3158 1817 +1341 origin_protocol 0x850b00e0... BloXroute Max Profit
13439312 6 3248 1907 +1341 gateway.fmas_lido 0xb67eaa5e... BloXroute Max Profit
13441716 8 3292 1953 +1339 p2porg 0x856b0004... Aestus
13439723 4 3201 1862 +1339 blockdaemon 0x853b0078... Ultra Sound
13444511 3 3175 1839 +1336 whale_0x4685 0xb26f9666... Aestus
13440519 2 3151 1817 +1334 0xb67eaa5e... BloXroute Regulated
13443238 5 3218 1885 +1333 p2porg 0xb26f9666... BloXroute Max Profit
13442624 2 3149 1817 +1332 kelp 0x853b0078... Agnostic Gnosis
13441820 1 3124 1794 +1330 0xb26f9666... Titan Relay
13444668 0 3100 1771 +1329 p2porg 0x99dbe3e8... Agnostic Gnosis
13441594 3 3165 1839 +1326 bitstamp 0x8db2a99d... BloXroute Max Profit
13441627 1 3119 1794 +1325 0x853b0078... Titan Relay
13442761 1 3118 1794 +1324 everstake 0x850b00e0... BloXroute Max Profit
13444650 6 3231 1907 +1324 p2porg 0x8527d16c... Ultra Sound
13440154 2 3140 1817 +1323 p2porg 0x8527d16c... Ultra Sound
13439115 4 3185 1862 +1323 abyss_finance 0x8527d16c... Ultra Sound
13440410 4 3185 1862 +1323 figment 0x856b0004... Ultra Sound
13443663 0 3094 1771 +1323 0xb26f9666... BloXroute Regulated
13445059 3 3162 1839 +1323 p2porg 0x8527d16c... Ultra Sound
13444365 2 3139 1817 +1322 0x88a53ec4... BloXroute Max Profit
13441771 2 3139 1817 +1322 0xb67eaa5e... BloXroute Max Profit
13443947 7 3251 1930 +1321 0x823e0146... Flashbots
13442723 7 3251 1930 +1321 p2porg 0x8527d16c... Ultra Sound
13440474 1 3114 1794 +1320 0xb67eaa5e... BloXroute Regulated
13439944 9 3295 1976 +1319 0x8527d16c... Ultra Sound
13441486 7 3249 1930 +1319 p2porg 0x856b0004... Aestus
13441218 2 3135 1817 +1318 kelp 0xb26f9666... Titan Relay
13444666 2 3135 1817 +1318 everstake 0xb67eaa5e... BloXroute Max Profit
13443061 5 3202 1885 +1317 0x8db2a99d... Flashbots
13443723 5 3199 1885 +1314 ether.fi 0x850b00e0... BloXroute Max Profit
13442702 1 3108 1794 +1314 ether.fi 0x853b0078... Agnostic Gnosis
13443318 4 3176 1862 +1314 p2porg 0xb26f9666... BloXroute Max Profit
13438956 6 3220 1907 +1313 0x8527d16c... Ultra Sound
13439724 6 3220 1907 +1313 mantle 0xb26f9666... BloXroute Regulated
13438885 5 3197 1885 +1312 p2porg 0x856b0004... Aestus
13443109 6 3218 1907 +1311 p2porg 0x853b0078... Agnostic Gnosis
13439082 9 3286 1976 +1310 p2porg 0xb26f9666... BloXroute Max Profit
13441150 0 3081 1771 +1310 stakingfacilities_lido 0x91a8729e... Ultra Sound
13442495 1 3103 1794 +1309 0xb26f9666... Titan Relay
13442228 1 3100 1794 +1306 0xb26f9666... BloXroute Max Profit
13443135 14 3394 2089 +1305 0xb67eaa5e... BloXroute Max Profit
13445722 7 3234 1930 +1304 p2porg 0x88a53ec4... BloXroute Max Profit
13442434 4 3165 1862 +1303 everstake 0x823e0146... Flashbots
13444637 2 3119 1817 +1302 p2porg 0x8527d16c... Ultra Sound
13439363 3 3141 1839 +1302 0x8527d16c... Ultra Sound
13444461 1 3094 1794 +1300 p2porg 0xac23f8cc... Flashbots
13439848 7 3230 1930 +1300 p2porg 0x856b0004... Aestus
13442842 4 3161 1862 +1299 ether.fi 0xb26f9666... BloXroute Regulated
13445149 1 3090 1794 +1296 everstake 0x88a53ec4... BloXroute Max Profit
13440539 6 3203 1907 +1296 0xb26f9666... BloXroute Max Profit
13444934 4 3157 1862 +1295 0x823e0146... Flashbots
13440839 5 3179 1885 +1294 figment 0x853b0078... Ultra Sound
13441729 0 3065 1771 +1294 ether.fi 0x8a850621... Ultra Sound
13441929 3 3133 1839 +1294 0x8527d16c... Ultra Sound
13443808 6 3201 1907 +1294 everstake 0xb26f9666... Titan Relay
13440008 1 3087 1794 +1293 stakingfacilities_lido 0x8527d16c... Ultra Sound
13442259 7 3223 1930 +1293 p2porg 0x856b0004... Agnostic Gnosis
13445123 6 3199 1907 +1292 p2porg 0x8527d16c... Ultra Sound
13440564 6 3197 1907 +1290 0x8527d16c... Ultra Sound
13441887 3 3128 1839 +1289 everstake 0xb26f9666... Titan Relay
13443860 2 3105 1817 +1288 0x850b00e0... BloXroute Max Profit
13439452 1 3082 1794 +1288 0xb26f9666... Titan Relay
13441360 10 3286 1998 +1288 0x8527d16c... Ultra Sound
13444612 1 3081 1794 +1287 0x8527d16c... Ultra Sound
13440834 7 3216 1930 +1286 p2porg 0x8527d16c... Ultra Sound
13445843 7 3216 1930 +1286 p2porg 0x823e0146... Flashbots
13442148 1 3079 1794 +1285 p2porg 0x856b0004... Aestus
13444653 6 3192 1907 +1285 stakingfacilities_lido 0x853b0078... Agnostic Gnosis
13442570 6 3192 1907 +1285 0xb26f9666... BloXroute Regulated
13445340 1 3078 1794 +1284 everstake 0x88a53ec4... BloXroute Max Profit
13439856 4 3146 1862 +1284 ether.fi 0x856b0004... Aestus
13443502 1 3077 1794 +1283 ether.fi 0x8527d16c... Ultra Sound
13440218 3 3122 1839 +1283 p2porg 0x853b0078... Flashbots
13444863 12 3325 2044 +1281 blockdaemon_lido 0x8527d16c... Ultra Sound
13445705 13 3347 2066 +1281 p2porg 0x856b0004... Agnostic Gnosis
13440626 0 3051 1771 +1280 ether.fi 0x91a8729e... Ultra Sound
13443781 6 3187 1907 +1280 ether.fi 0xb26f9666... Aestus
13444113 2 3096 1817 +1279 p2porg 0x856b0004... Aestus
13440946 4 3141 1862 +1279 ether.fi 0x8527d16c... Ultra Sound
13443784 12 3322 2044 +1278 whale_0x23be 0xb26f9666... BloXroute Max Profit
13442453 4 3140 1862 +1278 0x88a53ec4... BloXroute Max Profit
13443955 2 3093 1817 +1276 ether.fi 0x856b0004... Aestus
13444781 1 3070 1794 +1276 kelp 0x8527d16c... Ultra Sound
13440128 6 3182 1907 +1275 0xb26f9666... Titan Relay
13444383 1 3065 1794 +1271 0x850b00e0... BloXroute Max Profit
13443514 4 3133 1862 +1271 0xb67eaa5e... BloXroute Max Profit
13441403 4 3133 1862 +1271 figment 0xb26f9666... Titan Relay
13445109 2 3087 1817 +1270 0x856b0004... Aestus
13439342 8 3223 1953 +1270 bitstamp 0x8527d16c... Ultra Sound
13441299 3 3109 1839 +1270 p2porg 0x88a53ec4... BloXroute Regulated
13439134 6 3174 1907 +1267 0xb26f9666... BloXroute Max Profit
13440303 4 3127 1862 +1265 0xb67eaa5e... BloXroute Max Profit
13440126 0 3036 1771 +1265 p2porg 0xb26f9666... BloXroute Max Profit
13440381 1 3058 1794 +1264 ether.fi 0x853b0078... Agnostic Gnosis
13438818 13 3330 2066 +1264 blockdaemon 0x8527d16c... Ultra Sound
13444032 3 3103 1839 +1264 gateway.fmas_lido 0x8527d16c... Ultra Sound
13444710 2 3080 1817 +1263 kelp 0x823e0146... BloXroute Max Profit
13444178 7 3193 1930 +1263 p2porg 0x8527d16c... Ultra Sound
13442587 9 3238 1976 +1262 0xb26f9666... BloXroute Regulated
13440162 7 3191 1930 +1261 0xac23f8cc... BloXroute Max Profit
13445024 2 3077 1817 +1260 gateway.fmas_lido 0x8527d16c... Ultra Sound
13442630 0 3031 1771 +1260 0xb26f9666... Titan Relay
13445893 18 3438 2180 +1258 blockdaemon_lido 0xb67eaa5e... Titan Relay
13441557 1 3052 1794 +1258 0x856b0004... Agnostic Gnosis
13441999 2 3074 1817 +1257 0x856b0004... Aestus
13442212 1 3051 1794 +1257 mantle 0x8527d16c... Ultra Sound
13440039 9 3232 1976 +1256 ether.fi 0xb26f9666... BloXroute Regulated
13440596 0 3027 1771 +1256 0x8527d16c... Ultra Sound
13440654 1 3049 1794 +1255 whale_0x7791 0x853b0078... Flashbots
13438896 6 3162 1907 +1255 kelp 0xb26f9666... Titan Relay
13445979 7 3184 1930 +1254 0x823e0146... Flashbots
13445636 1 3047 1794 +1253 0x8db2a99d... Flashbots
13440999 7 3182 1930 +1252 ether.fi 0xb26f9666... EthGas
13440623 1 3044 1794 +1250 0x856b0004... Aestus
13439920 6 3157 1907 +1250 everstake 0xb26f9666... Titan Relay
13444658 4 3110 1862 +1248 ether.fi 0x823e0146... BloXroute Max Profit
13442865 2 3064 1817 +1247 0x853b0078... Agnostic Gnosis
13445450 5 3132 1885 +1247 0x88a53ec4... BloXroute Regulated
13443416 10 3245 1998 +1247 p2porg 0x856b0004... Agnostic Gnosis
13443186 0 3017 1771 +1246 everstake 0xb26f9666... Aestus
13442461 7 3175 1930 +1245 0x88857150... Ultra Sound
Total anomalies: 267

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})