Mon, Jan 12, 2026

Propagation anomalies - 2026-01-12

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-12' AND slot_start_date_time < '2026-01-12'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-12' AND slot_start_date_time < '2026-01-12'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-12' AND slot_start_date_time < '2026-01-12'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-12' AND slot_start_date_time < '2026-01-12'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-12' AND slot_start_date_time < '2026-01-12'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-12' AND slot_start_date_time < '2026-01-12'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-12' AND slot_start_date_time < '2026-01-12'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-12' AND slot_start_date_time < '2026-01-12'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,173
MEV blocks: 6,693 (93.3%)
Local blocks: 480 (6.7%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1793.7 + 20.17 × blob_count (R² = 0.016)
Residual σ = 629.4ms
Anomalies (>2σ slow): 251 (3.5%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13448147 0 7125 1794 +5331 rocketpool Local Local
13450401 0 6365 1794 +4571 abyss_finance Local Local
13451121 2 5801 1834 +3967 csm_operator162_lido Local Local
13447203 6 5540 1915 +3625 whale_0xba8f Local Local
13448544 0 4345 1794 +2551 upbit Local Local
13449304 0 4107 1794 +2313 ether.fi Local Local
13450295 0 4018 1794 +2224 whale_0x3fb6 Local Local
13447558 1 4020 1814 +2206 0x8527d16c... Ultra Sound
13450396 0 3927 1794 +2133 ether.fi Local Local
13451036 0 3917 1794 +2123 solo_stakers Local Local
13451749 4 3957 1874 +2083 whale_0xba8f Local Local
13452832 10 4066 1995 +2071 0x850b00e0... BloXroute Regulated
13446473 0 3814 1794 +2020 ether.fi 0x850b00e0... BloXroute Max Profit
13446365 0 3773 1794 +1979 ether.fi 0xb67eaa5e... BloXroute Max Profit
13448706 0 3772 1794 +1978 Local Local
13446312 0 3736 1794 +1942 whale_0xc541 0x852b0070... Aestus
13451712 8 3834 1955 +1879 bridgetower_lido 0x8db2a99d... BloXroute Max Profit
13446331 6 3759 1915 +1844 blockdaemon 0xb26f9666... Titan Relay
13451999 7 3761 1935 +1826 blockdaemon_lido 0x88857150... Ultra Sound
13450105 8 3779 1955 +1824 0xb7c5e609... BloXroute Max Profit
13447650 0 3615 1794 +1821 figment Local Local
13449959 7 3717 1935 +1782 0x88a53ec4... BloXroute Regulated
13452736 1 3580 1814 +1766 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13446608 1 3578 1814 +1764 blockdaemon 0x8527d16c... Ultra Sound
13451980 1 3576 1814 +1762 0x8527d16c... Ultra Sound
13451072 5 3656 1895 +1761 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13452440 2 3583 1834 +1749 0x88510a78... BloXroute Regulated
13448512 4 3617 1874 +1743 0x8a850621... Titan Relay
13452615 3 3578 1854 +1724 blockdaemon 0xb7c5beef... Titan Relay
13446898 5 3612 1895 +1717 0x88857150... Ultra Sound
13452150 7 3649 1935 +1714 0x8527d16c... Ultra Sound
13448558 3 3562 1854 +1708 everstake 0xb26f9666... Titan Relay
13451520 5 3593 1895 +1698 blockdaemon_lido 0xb26f9666... Titan Relay
13452716 9 3656 1975 +1681 0x8527d16c... Ultra Sound
13447599 2 3512 1834 +1678 0x91b123d8... BloXroute Regulated
13452179 4 3544 1874 +1670 everstake 0x853b0078... BloXroute Max Profit
13446304 4 3540 1874 +1666 everstake 0x850b00e0... BloXroute Max Profit
13450471 9 3639 1975 +1664 piertwo 0xa230e2cf... Flashbots
13448137 0 3455 1794 +1661 ether.fi 0x850b00e0... BloXroute Max Profit
13449732 1 3473 1814 +1659 0x8db2a99d... Flashbots
13450193 9 3629 1975 +1654 0x8527d16c... Ultra Sound
13446264 7 3588 1935 +1653 ether.fi 0x8527d16c... Ultra Sound
13451624 5 3523 1895 +1628 revolut 0x8527d16c... Ultra Sound
13450634 5 3521 1895 +1626 ether.fi 0x823e0146... Flashbots
13447926 9 3587 1975 +1612 abyss_finance 0x8527d16c... Ultra Sound
13448588 11 3623 2016 +1607 0x8527d16c... Ultra Sound
13447301 3 3453 1854 +1599 ether.fi 0x88a53ec4... BloXroute Regulated
13448454 1 3401 1814 +1587 blockdaemon 0xb67eaa5e... Titan Relay
13446366 3 3433 1854 +1579 ether.fi 0xb67eaa5e... EthGas
13449536 1 3391 1814 +1577 0x853b0078... Titan Relay
13446362 4 3445 1874 +1571 blockdaemon 0x850b00e0... BloXroute Regulated
13449418 12 3595 2036 +1559 abyss_finance 0xb26f9666... Titan Relay
13448589 1 3365 1814 +1551 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13450144 9 3526 1975 +1551 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13449398 9 3522 1975 +1547 0xb67eaa5e... BloXroute Regulated
13447072 5 3438 1895 +1543 bitstamp 0xac23f8cc... BloXroute Max Profit
13447811 8 3497 1955 +1542 ether.fi 0x823e0146... BloXroute Max Profit
13447000 1 3354 1814 +1540 blockdaemon 0xb67eaa5e... Titan Relay
13446688 0 3323 1794 +1529 p2porg 0xb26f9666... BloXroute Max Profit
13451379 10 3524 1995 +1529 0x856b0004... Ultra Sound
13448863 2 3356 1834 +1522 coinbase 0x8527d16c... Ultra Sound
13450878 5 3412 1895 +1517 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13452721 0 3309 1794 +1515 Local Local
13449829 1 3326 1814 +1512 blockdaemon_lido 0xb26f9666... Titan Relay
13446150 3 3365 1854 +1511 0x8a850621... Titan Relay
13450828 7 3443 1935 +1508 0x850b00e0... BloXroute Regulated
13446280 5 3391 1895 +1496 0x850b00e0... BloXroute Max Profit
13449647 5 3382 1895 +1487 0x850b00e0... BloXroute Regulated
13451614 6 3402 1915 +1487 blockdaemon 0x8a850621... Titan Relay
13448865 4 3358 1874 +1484 blockdaemon 0x88a53ec4... BloXroute Regulated
13450893 1 3293 1814 +1479 revolut 0x850b00e0... BloXroute Regulated
13448126 8 3434 1955 +1479 blockdaemon_lido 0xb67eaa5e... BloXroute Max Profit
13448997 5 3373 1895 +1478 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13449210 1 3290 1814 +1476 blockdaemon_lido 0xb26f9666... Titan Relay
13450331 5 3369 1895 +1474 blockdaemon 0xb26f9666... Titan Relay
13448911 2 3307 1834 +1473 revolut 0x88a53ec4... BloXroute Regulated
13452591 5 3366 1895 +1471 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13450003 6 3385 1915 +1470 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13446292 7 3404 1935 +1469 0xb26f9666... EthGas
13452502 1 3278 1814 +1464 whale_0x829e 0xb67eaa5e... BloXroute Max Profit
13447938 1 3278 1814 +1464 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13449410 4 3334 1874 +1460 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13446472 6 3367 1915 +1452 blockdaemon 0xb67eaa5e... BloXroute Regulated
13449533 6 3366 1915 +1451 0xb26f9666... Titan Relay
13448543 1 3265 1814 +1451 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13450845 2 3285 1834 +1451 Local Local
13450770 5 3339 1895 +1444 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13446677 0 3237 1794 +1443 whale_0x23be 0x99dbe3e8... Ultra Sound
13451144 4 3314 1874 +1440 blockdaemon 0x850b00e0... BloXroute Regulated
13449984 7 3372 1935 +1437 everstake 0x853b0078... Agnostic Gnosis
13446349 6 3350 1915 +1435 0x8527d16c... Ultra Sound
13448801 1 3247 1814 +1433 0x853b0078... Agnostic Gnosis
13450151 4 3307 1874 +1433 blockdaemon 0x850b00e0... BloXroute Regulated
13449800 4 3302 1874 +1428 blockdaemon 0xb26f9666... Titan Relay
13447646 0 3220 1794 +1426 blockdaemon 0x91a8729e... BloXroute Regulated
13449070 0 3220 1794 +1426 p2porg 0x91a8729e... BloXroute Max Profit
13450239 2 3259 1834 +1425 0xb67eaa5e... BloXroute Regulated
13446113 11 3439 2016 +1423 everstake 0xb26f9666... Titan Relay
13449802 9 3398 1975 +1423 p2porg 0xb67eaa5e... BloXroute Regulated
13452811 1 3236 1814 +1422 blockdaemon_lido 0x88510a78... BloXroute Regulated
13447872 6 3336 1915 +1421 p2porg 0x8527d16c... Ultra Sound
13448662 9 3396 1975 +1421 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13450649 10 3409 1995 +1414 0x88a53ec4... BloXroute Max Profit
13446726 2 3244 1834 +1410 solo_stakers Local Local
13448525 9 3385 1975 +1410 0x850b00e0... Flashbots
13446799 5 3302 1895 +1407 revolut 0xb26f9666... Titan Relay
13448844 11 3419 2016 +1403 0x88a53ec4... BloXroute Regulated
13446076 6 3316 1915 +1401 p2porg 0x8527d16c... Ultra Sound
13451692 1 3203 1814 +1389 blockdaemon 0x8527d16c... Ultra Sound
13450594 0 3182 1794 +1388 p2porg 0x88857150... Ultra Sound
13446851 9 3363 1975 +1388 0x8527d16c... Ultra Sound
13447801 1 3199 1814 +1385 everstake 0x8527d16c... Ultra Sound
13447269 2 3219 1834 +1385 0x850b00e0... Flashbots
13452490 7 3319 1935 +1384 blockdaemon 0x856b0004... Ultra Sound
13452157 0 3176 1794 +1382 origin_protocol 0xb26f9666... Aestus
13447100 13 3436 2056 +1380 0xb26f9666... Ultra Sound
13449712 10 3375 1995 +1380 0x850b00e0... BloXroute Regulated
13448616 5 3269 1895 +1374 0x88a53ec4... BloXroute Regulated
13451132 6 3284 1915 +1369 revolut 0xb26f9666... Titan Relay
13448814 14 3445 2076 +1369 0x91b123d8... Flashbots
13446192 12 3404 2036 +1368 0xb7c5e609... BloXroute Max Profit
13450804 3 3221 1854 +1367 blockdaemon_lido 0x88857150... Ultra Sound
13446317 3 3218 1854 +1364 kraken 0xb26f9666... EthGas
13448853 3 3217 1854 +1363 ether.fi 0xb67eaa5e... EthGas
13452692 10 3358 1995 +1363 blockdaemon 0xb26f9666... Titan Relay
13449477 7 3297 1935 +1362 revolut 0x8527d16c... Ultra Sound
13446111 7 3296 1935 +1361 0x850b00e0... Flashbots
13448455 8 3316 1955 +1361 blockdaemon_lido 0x8527d16c... Ultra Sound
13447706 11 3372 2016 +1356 0xb26f9666... Titan Relay
13449082 1 3168 1814 +1354 everstake 0x8527d16c... Ultra Sound
13452089 2 3185 1834 +1351 blockdaemon_lido 0x850b00e0... Ultra Sound
13447047 4 3223 1874 +1349 0x850b00e0... BloXroute Max Profit
13447877 4 3220 1874 +1346 kelp 0x8527d16c... Ultra Sound
13446409 1 3159 1814 +1345 0xac23f8cc... Flashbots
13453054 5 3239 1895 +1344 p2porg 0xb67eaa5e... BloXroute Regulated
13451275 5 3239 1895 +1344 0xb26f9666... BloXroute Max Profit
13448104 4 3218 1874 +1344 p2porg 0x853b0078... BloXroute Max Profit
13449590 5 3238 1895 +1343 0x850b00e0... BloXroute Regulated
13448883 2 3177 1834 +1343 0x856b0004... Ultra Sound
13450325 21 3560 2217 +1343 p2porg 0xb7c5e609... BloXroute Max Profit
13447587 5 3235 1895 +1340 0xb7c5e609... Flashbots
13448930 7 3275 1935 +1340 ether.fi 0x856b0004... Aestus
13446624 8 3294 1955 +1339 0x823e0146... BloXroute Max Profit
13451390 1 3151 1814 +1337 0x850b00e0... BloXroute Regulated
13453025 10 3327 1995 +1332 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13450120 6 3246 1915 +1331 p2porg 0x8527d16c... Ultra Sound
13446391 9 3306 1975 +1331 p2porg 0x856b0004... Agnostic Gnosis
13448940 4 3204 1874 +1330 figment 0x8db2a99d... Flashbots
13448390 10 3324 1995 +1329 0x853b0078... Titan Relay
13451360 6 3243 1915 +1328 everstake 0x853b0078... Agnostic Gnosis
13449329 9 3303 1975 +1328 blockdaemon 0x850b00e0... BloXroute Regulated
13447768 7 3261 1935 +1326 blockdaemon 0x856b0004... Ultra Sound
13449481 2 3160 1834 +1326 p2porg 0x853b0078... Agnostic Gnosis
13451270 8 3280 1955 +1325 p2porg 0x88a53ec4... BloXroute Max Profit
13452900 4 3199 1874 +1325 stakingfacilities_lido 0x8527d16c... Ultra Sound
13447881 5 3218 1895 +1323 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13448050 7 3255 1935 +1320 stakingfacilities_lido 0x8db2a99d... BloXroute Max Profit
13452248 7 3255 1935 +1320 revolut 0xb26f9666... Titan Relay
13446025 2 3154 1834 +1320 bitstamp 0x8527d16c... Ultra Sound
13448384 1 3132 1814 +1318 stakefish 0x823e0146... BloXroute Max Profit
13446099 7 3253 1935 +1318 0x856b0004... Aestus
13451877 7 3251 1935 +1316 0x8527d16c... Ultra Sound
13451939 4 3190 1874 +1316 p2porg 0x88a53ec4... BloXroute Max Profit
13452517 11 3331 2016 +1315 blockdaemon_lido 0xb26f9666... Titan Relay
13450779 1 3129 1814 +1315 0x850b00e0... BloXroute Max Profit
13446302 5 3208 1895 +1313 nethermind_lido 0x850b00e0... BloXroute Regulated
13448357 0 3105 1794 +1311 p2porg 0xb26f9666... BloXroute Regulated
13449779 8 3266 1955 +1311 figment 0x823e0146... Flashbots
13446002 1 3124 1814 +1310 p2porg 0x88a53ec4... BloXroute Max Profit
13452521 9 3285 1975 +1310 0x8527d16c... Ultra Sound
13446817 0 3103 1794 +1309 blockdaemon 0x8527d16c... Ultra Sound
13450518 18 3466 2157 +1309 blockdaemon 0x850b00e0... BloXroute Regulated
13448202 4 3183 1874 +1309 0x8527d16c... Ultra Sound
13451724 12 3344 2036 +1308 rocklogicgmbh_lido 0xb67eaa5e... BloXroute Max Profit
13453078 9 3283 1975 +1308 0x8a850621... Ultra Sound
13452551 5 3202 1895 +1307 blockdaemon_lido 0x853b0078... Ultra Sound
13449914 13 3362 2056 +1306 revolut 0xb7c5c39a... BloXroute Regulated
13451445 18 3462 2157 +1305 0x850b00e0... BloXroute Regulated
13446360 10 3300 1995 +1305 everstake 0xb26f9666... Titan Relay
13450973 3 3158 1854 +1304 bitstamp 0x8527d16c... Ultra Sound
13447254 9 3279 1975 +1304 0x8527d16c... Ultra Sound
13450907 5 3198 1895 +1303 0x88a53ec4... BloXroute Regulated
13453093 1 3116 1814 +1302 p2porg 0x856b0004... Aestus
13451339 6 3216 1915 +1301 p2porg 0x853b0078... Ultra Sound
13448959 11 3316 2016 +1300 0x88a53ec4... BloXroute Regulated
13449301 6 3215 1915 +1300 bitstamp 0x8527d16c... Ultra Sound
13452563 0 3093 1794 +1299 figment 0xb26f9666... Titan Relay
13453003 0 3093 1794 +1299 0x8a850621... Ultra Sound
13452214 14 3375 2076 +1299 blockdaemon 0x850b00e0... BloXroute Regulated
13448092 2 3132 1834 +1298 0x850b00e0... Flashbots
13449509 10 3293 1995 +1298 ether.fi 0xb7c5e609... BloXroute Max Profit
13448473 6 3212 1915 +1297 p2porg 0xb26f9666... BloXroute Max Profit
13448070 2 3131 1834 +1297 everstake 0x853b0078... BloXroute Max Profit
13447661 7 3230 1935 +1295 0x8527d16c... Ultra Sound
13451861 2 3129 1834 +1295 everstake 0x856b0004... Aestus
13446842 15 3391 2096 +1295 luno 0x8527d16c... Ultra Sound
13450450 4 3169 1874 +1295 gateway.fmas_lido 0x8527d16c... Ultra Sound
13446648 6 3208 1915 +1293 stakingfacilities_lido 0x8527d16c... Ultra Sound
13448260 1 3107 1814 +1293 ether.fi 0xb26f9666... Titan Relay
13446716 2 3127 1834 +1293 everstake 0xb26f9666... Titan Relay
13448093 6 3206 1915 +1291 bitstamp 0x856b0004... Ultra Sound
13446453 12 3326 2036 +1290 0x8a850621... Ultra Sound
13452036 2 3124 1834 +1290 p2porg 0xb26f9666... BloXroute Regulated
13448595 3 3144 1854 +1290 0x88a53ec4... BloXroute Max Profit
13448927 6 3203 1915 +1288 stakingfacilities_lido 0x8db2a99d... Flashbots
13449279 2 3122 1834 +1288 ether.fi 0x8527d16c... Ultra Sound
13449026 5 3181 1895 +1286 everstake 0xb26f9666... Titan Relay
13450753 3 3140 1854 +1286 everstake 0xb26f9666... Titan Relay
13447146 6 3200 1915 +1285 0x823e0146... Flashbots
13446303 10 3279 1995 +1284 abyss_finance 0xa230e2cf... Flashbots
13448495 1 3097 1814 +1283 0x856b0004... Aestus
13451585 15 3379 2096 +1283 blockdaemon 0xb26f9666... Titan Relay
13449011 10 3278 1995 +1283 p2porg 0x853b0078... BloXroute Max Profit
13451593 5 3176 1895 +1281 0x8527d16c... Ultra Sound
13449899 2 3115 1834 +1281 ether.fi 0xac23f8cc... BloXroute Max Profit
13450066 9 3256 1975 +1281 figment 0x8527d16c... Ultra Sound
13449052 1 3094 1814 +1280 0x8527d16c... Ultra Sound
13452388 6 3194 1915 +1279 p2porg 0x8527d16c... Ultra Sound
13446734 1 3093 1814 +1279 origin_protocol 0x8527d16c... Ultra Sound
13446140 1 3093 1814 +1279 0x856b0004... Agnostic Gnosis
13446333 8 3234 1955 +1279 0x88a53ec4... BloXroute Max Profit
13450668 8 3234 1955 +1279 p2porg 0x8527d16c... Ultra Sound
13452066 0 3072 1794 +1278 kelp 0xb26f9666... Titan Relay
13446206 5 3172 1895 +1277 p2porg 0x856b0004... Ultra Sound
13446859 6 3192 1915 +1277 everstake 0x853b0078... Ultra Sound
13448619 3 3131 1854 +1277 everstake 0xb26f9666... Titan Relay
13448072 4 3151 1874 +1277 p2porg 0xac23f8cc... Flashbots
13447967 1 3090 1814 +1276 p2porg 0xb7c5e609... BloXroute Max Profit
13449096 12 3311 2036 +1275 0x853b0078... BloXroute Max Profit
13449820 3 3129 1854 +1275 gateway.fmas_lido 0x8527d16c... Ultra Sound
13447548 2 3107 1834 +1273 everstake 0x856b0004... Aestus
13452885 5 3167 1895 +1272 0x88a53ec4... BloXroute Max Profit
13447282 1 3085 1814 +1271 0x8527d16c... Ultra Sound
13447497 4 3145 1874 +1271 0xb67eaa5e... BloXroute Max Profit
13452878 0 3064 1794 +1270 0x91a8729e... BloXroute Max Profit
13448279 1 3082 1814 +1268 0x8db2a99d... BloXroute Max Profit
13450511 0 3061 1794 +1267 figment 0x8527d16c... Ultra Sound
13446427 6 3182 1915 +1267 everstake 0x88a53ec4... BloXroute Regulated
13447087 7 3202 1935 +1267 0x850b00e0... Flashbots
13452749 6 3181 1915 +1266 0x8527d16c... Ultra Sound
13448819 4 3140 1874 +1266 gateway.fmas_lido 0x8527d16c... Ultra Sound
13452783 6 3178 1915 +1263 bitstamp 0x8527d16c... Ultra Sound
13450335 9 3238 1975 +1263 abyss_finance 0xb67eaa5e... BloXroute Max Profit
13446583 4 3137 1874 +1263 p2porg 0x853b0078... Agnostic Gnosis
13452363 7 3197 1935 +1262 whale_0xe985 0x856b0004... Agnostic Gnosis
13452873 2 3096 1834 +1262 whale_0x4685 0x88a53ec4... BloXroute Max Profit
13449799 14 3337 2076 +1261 solo_stakers 0x8a850621... Titan Relay
13446446 8 3215 1955 +1260 0x823e0146... Flashbots
13450088 11 3275 2016 +1259 stakingfacilities_lido 0x853b0078... Ultra Sound
13452190 2 3093 1834 +1259 everstake 0x850b00e0... BloXroute Max Profit
13451258 8 3214 1955 +1259 p2porg 0x88a53ec4... BloXroute Regulated
Total anomalies: 251

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})