Tue, Jan 13, 2026

Propagation anomalies - 2026-01-13

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-13' AND slot_start_date_time < '2026-01-13'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-13' AND slot_start_date_time < '2026-01-13'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-13' AND slot_start_date_time < '2026-01-13'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-13' AND slot_start_date_time < '2026-01-13'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-13' AND slot_start_date_time < '2026-01-13'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-13' AND slot_start_date_time < '2026-01-13'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-13' AND slot_start_date_time < '2026-01-13'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-13' AND slot_start_date_time < '2026-01-13'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,170
MEV blocks: 6,696 (93.4%)
Local blocks: 474 (6.6%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1801.3 + 14.69 × blob_count (R² = 0.016)
Residual σ = 641.0ms
Anomalies (>2σ slow): 219 (3.1%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13454624 4 9833 1860 +7973 solo_stakers Local Local
13454400 0 8014 1801 +6213 upbit Local Local
13457185 0 6009 1801 +4208 solo_stakers Local Local
13456288 0 5566 1801 +3765 abyss_finance Local Local
13455463 0 5193 1801 +3392 Local Local
13456714 0 4651 1801 +2850 Local Local
13458944 0 4320 1801 +2519 stakefish Local Local
13456736 0 4266 1801 +2465 Local Local
13457332 0 4213 1801 +2412 bitstamp Local Local
13460384 0 3809 1801 +2008 solo_stakers Local Local
13458039 0 3806 1801 +2005 abyss_finance Local Local
13455840 3 3695 1845 +1850 0x8a850621... Titan Relay
13454848 0 3639 1801 +1838 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13458304 5 3707 1875 +1832 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13459856 21 3939 2110 +1829 whale_0xe3f7 Local Local
13457542 6 3718 1889 +1829 figment 0xa230e2cf... BloXroute Regulated
13459384 6 3712 1889 +1823 ether.fi 0xb67eaa5e... BloXroute Max Profit
13460395 1 3621 1816 +1805 whale_0xdd6c 0x8db2a99d... Flashbots
13459785 1 3610 1816 +1794 ether.fi 0xb7c5e609... BloXroute Max Profit
13453382 4 3645 1860 +1785 0xb67eaa5e... BloXroute Regulated
13456387 0 3586 1801 +1785 blockdaemon 0xb67eaa5e... BloXroute Regulated
13456992 5 3659 1875 +1784 0xb67eaa5e... Titan Relay
13456197 2 3610 1831 +1779 0x88a53ec4... BloXroute Regulated
13455424 7 3672 1904 +1768 gateway.fmas_lido 0xb26f9666... Titan Relay
13459908 11 3729 1963 +1766 piertwo Local Local
13457464 21 3875 2110 +1765 abyss_finance Local Local
13455408 3 3609 1845 +1764 blockdaemon 0x82c466b9... BloXroute Regulated
13457786 15 3778 2022 +1756 0x8527d16c... Ultra Sound
13453582 7 3659 1904 +1755 0x8527d16c... Ultra Sound
13455402 3 3600 1845 +1755 0x8a850621... Ultra Sound
13453570 5 3628 1875 +1753 blockdaemon 0xb26f9666... Titan Relay
13454421 1 3562 1816 +1746 0x8527d16c... Ultra Sound
13454369 6 3633 1889 +1744 0x8527d16c... Ultra Sound
13459877 15 3760 2022 +1738 0xb67eaa5e... BloXroute Regulated
13453478 5 3604 1875 +1729 0x8a850621... Ultra Sound
13454739 5 3597 1875 +1722 blockdaemon 0x8527d16c... Ultra Sound
13456131 14 3714 2007 +1707 blockdaemon 0x853b0078... Ultra Sound
13458051 0 3507 1801 +1706 blockdaemon_lido 0xa1da2978... Ultra Sound
13454252 6 3587 1889 +1698 0x88a53ec4... BloXroute Max Profit
13456568 8 3593 1919 +1674 0x853b0078... Ultra Sound
13454635 8 3583 1919 +1664 revolut 0xb67eaa5e... Titan Relay
13459680 0 3462 1801 +1661 stakingfacilities_lido 0x8527d16c... Ultra Sound
13453552 6 3548 1889 +1659 revolut 0x8527d16c... Ultra Sound
13457541 17 3707 2051 +1656 0xb26f9666... Titan Relay
13457029 19 3730 2080 +1650 0x82c466b9... BloXroute Regulated
13455644 9 3569 1934 +1635 revolut 0x8527d16c... Ultra Sound
13456561 4 3487 1860 +1627 blockdaemon_lido 0xb67eaa5e... Titan Relay
13454813 6 3515 1889 +1626 solo_stakers 0x856b0004... Aestus
13456811 0 3421 1801 +1620 abyss_finance 0x8527d16c... Ultra Sound
13456483 3 3461 1845 +1616 0x8a850621... Ultra Sound
13459275 1 3412 1816 +1596 blockdaemon_lido 0xb67eaa5e... Titan Relay
13457984 0 3394 1801 +1593 gateway.fmas_lido 0x852b0070... Agnostic Gnosis
13455030 3 3430 1845 +1585 abyss_finance 0x88857150... Ultra Sound
13459568 5 3453 1875 +1578 ether.fi 0xb26f9666... Titan Relay
13457489 10 3516 1948 +1568 binance 0x8a850621... Titan Relay
13458882 0 3359 1801 +1558 blockdaemon_lido 0xb67eaa5e... Titan Relay
13457385 9 3489 1934 +1555 0x91b123d8... BloXroute Regulated
13456836 0 3355 1801 +1554 blockdaemon 0xb26f9666... Titan Relay
13456933 5 3426 1875 +1551 whale_0xdd6c 0x850b00e0... BloXroute Max Profit
13456303 1 3361 1816 +1545 0x8a850621... Titan Relay
13457548 18 3610 2066 +1544 p2porg 0x850b00e0... BloXroute Max Profit
13459040 9 3475 1934 +1541 Local Local
13458400 21 3649 2110 +1539 p2porg 0x850b00e0... BloXroute Max Profit
13455717 7 3437 1904 +1533 kraken 0xb26f9666... EthGas
13455328 3 3375 1845 +1530 p2porg 0x8527d16c... Ultra Sound
13454429 5 3403 1875 +1528 0x8a850621... Ultra Sound
13458423 16 3563 2036 +1527 stakefish Local Local
13455042 0 3316 1801 +1515 0x926b7905... BloXroute Regulated
13456463 2 3343 1831 +1512 blockdaemon 0x853b0078... Ultra Sound
13455588 1 3325 1816 +1509 blockdaemon_lido 0xb26f9666... Titan Relay
13456763 0 3308 1801 +1507 0x853b0078... Ultra Sound
13458308 21 3615 2110 +1505 ether.fi 0xac23f8cc... Flashbots
13459925 5 3372 1875 +1497 blockdaemon 0x850b00e0... BloXroute Regulated
13457672 18 3561 2066 +1495 0x8a850621... Ultra Sound
13456156 0 3296 1801 +1495 blockdaemon 0x853b0078... Ultra Sound
13458702 0 3295 1801 +1494 0xb67eaa5e... BloXroute Regulated
13458600 3 3337 1845 +1492 p2porg 0x8527d16c... Ultra Sound
13455848 2 3320 1831 +1489 blockdaemon_lido 0xb26f9666... Titan Relay
13456624 1 3303 1816 +1487 blockdaemon_lido 0x88510a78... BloXroute Regulated
13459115 1 3296 1816 +1480 blockdaemon_lido 0xb26f9666... Titan Relay
13458548 11 3440 1963 +1477 blockdaemon 0x850b00e0... BloXroute Regulated
13459013 17 3528 2051 +1477 blockdaemon 0x88a53ec4... BloXroute Regulated
13458441 1 3290 1816 +1474 blockdaemon_lido 0x91b123d8... BloXroute Regulated
13453505 6 3362 1889 +1473 blockdaemon_lido 0x91b123d8... BloXroute Regulated
13454415 5 3344 1875 +1469 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13458360 20 3563 2095 +1468 lido 0x850b00e0... BloXroute Max Profit
13453984 10 3416 1948 +1468 everstake 0xb67eaa5e... BloXroute Max Profit
13457446 15 3488 2022 +1466 lido 0xb26f9666... Titan Relay
13453503 5 3341 1875 +1466 blockdaemon 0x8527d16c... Ultra Sound
13457591 9 3396 1934 +1462 0x850b00e0... BloXroute Regulated
13459693 4 3321 1860 +1461 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13453606 3 3305 1845 +1460 blockdaemon 0x850b00e0... BloXroute Regulated
13457722 19 3540 2080 +1460 stakefish_lido 0xb67eaa5e... BloXroute Regulated
13459797 9 3392 1934 +1458 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13459392 8 3377 1919 +1458 bitstamp 0x8527d16c... Ultra Sound
13459216 3 3303 1845 +1458 blockdaemon_lido 0xb7c5e609... BloXroute Regulated
13454352 5 3332 1875 +1457 blockdaemon 0x850b00e0... BloXroute Regulated
13456000 5 3332 1875 +1457 nethermind_lido 0x853b0078... Agnostic Gnosis
13459896 0 3256 1801 +1455 blockdaemon 0xb26f9666... Titan Relay
13455755 6 3344 1889 +1455 blockdaemon 0x82c466b9... BloXroute Regulated
13453996 4 3313 1860 +1453 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13459019 12 3426 1978 +1448 blockdaemon_lido 0x88857150... Ultra Sound
13455274 6 3337 1889 +1448 blockdaemon 0x88a53ec4... BloXroute Regulated
13458996 5 3317 1875 +1442 0x88a53ec4... BloXroute Regulated
13459807 0 3243 1801 +1442 gateway.fmas_lido 0x850b00e0... BloXroute Regulated
13458601 0 3243 1801 +1442 p2porg 0x99dbe3e8... Ultra Sound
13456055 5 3312 1875 +1437 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13457790 3 3282 1845 +1437 luno 0x8527d16c... Ultra Sound
13459310 4 3296 1860 +1436 luno 0x8527d16c... Ultra Sound
13460190 9 3367 1934 +1433 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13458336 0 3234 1801 +1433 p2porg 0xba003e46... BloXroute Max Profit
13460345 8 3347 1919 +1428 blockdaemon_lido 0x88510a78... BloXroute Regulated
13453488 6 3317 1889 +1428 luno 0x8527d16c... Ultra Sound
13454503 3 3269 1845 +1424 0x850b00e0... BloXroute Max Profit
13459455 3 3268 1845 +1423 0xb67eaa5e... BloXroute Max Profit
13457812 5 3296 1875 +1421 p2porg 0x856b0004... Ultra Sound
13453863 8 3339 1919 +1420 blockdaemon_lido 0x8527d16c... Ultra Sound
13455962 8 3333 1919 +1414 0xb26f9666... Titan Relay
13457148 8 3330 1919 +1411 p2porg 0x8527d16c... Ultra Sound
13460222 4 3269 1860 +1409 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13453397 6 3294 1889 +1405 0x88a53ec4... BloXroute Regulated
13458453 1 3217 1816 +1401 p2porg 0x8527d16c... Ultra Sound
13453889 7 3305 1904 +1401 revolut 0x8527d16c... Ultra Sound
13455072 3 3244 1845 +1399 everstake 0x856b0004... Aestus
13460198 8 3314 1919 +1395 0x850b00e0... BloXroute Regulated
13456832 3 3228 1845 +1383 p2porg 0x8527d16c... Ultra Sound
13457117 12 3359 1978 +1381 p2porg 0x8db2a99d... BloXroute Max Profit
13457310 17 3431 2051 +1380 p2porg 0xb26f9666... BloXroute Regulated
13455263 4 3238 1860 +1378 ether.fi 0xb67eaa5e... BloXroute Regulated
13457205 15 3398 2022 +1376 blockdaemon 0xb67eaa5e... Titan Relay
13457883 0 3176 1801 +1375 0x8527d16c... Ultra Sound
13456556 3 3220 1845 +1375 figment 0x8a850621... Ultra Sound
13456069 5 3247 1875 +1372 coinbase 0x850b00e0... Ultra Sound
13458274 8 3291 1919 +1372 p2porg 0x856b0004... Ultra Sound
13456835 0 3170 1801 +1369 ether.fi 0x8db2a99d... Flashbots
13455257 8 3286 1919 +1367 ether.fi 0xb67eaa5e... BloXroute Max Profit
13454760 5 3240 1875 +1365 gateway.fmas_lido 0x856b0004... Ultra Sound
13457122 10 3310 1948 +1362 0x91b123d8... BloXroute Regulated
13459313 1 3174 1816 +1358 0x850b00e0... BloXroute Regulated
13457210 10 3304 1948 +1356 revolut 0x91b123d8... BloXroute Regulated
13455838 3 3200 1845 +1355 ether.fi 0x88857150... Ultra Sound
13458597 1 3170 1816 +1354 0x853b0078... Agnostic Gnosis
13457374 0 3154 1801 +1353 blockscape_lido Local Local
13458176 20 3446 2095 +1351 gateway.fmas_lido 0x853b0078... Ultra Sound
13459003 0 3151 1801 +1350 everstake 0x856b0004... Agnostic Gnosis
13459881 9 3277 1934 +1343 blockdaemon_lido 0xb26f9666... Titan Relay
13453664 2 3172 1831 +1341 everstake 0xb26f9666... Titan Relay
13454140 4 3201 1860 +1341 ether.fi 0x88a53ec4... BloXroute Max Profit
13457614 18 3406 2066 +1340 0x850b00e0... BloXroute Max Profit
13455242 5 3213 1875 +1338 p2porg 0x8527d16c... Ultra Sound
13459295 5 3212 1875 +1337 gateway.fmas_lido 0x856b0004... Ultra Sound
13454620 0 3138 1801 +1337 blockdaemon 0x8527d16c... Ultra Sound
13457861 13 3329 1992 +1337 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13457318 5 3210 1875 +1335 gateway.fmas_lido 0xb7c5e609... BloXroute Max Profit
13453706 6 3224 1889 +1335 blockdaemon_lido 0xb26f9666... Titan Relay
13456959 4 3194 1860 +1334 bitstamp 0x856b0004... Aestus
13457469 8 3251 1919 +1332 p2porg 0x856b0004... Ultra Sound
13458543 9 3265 1934 +1331 p2porg 0x853b0078... Agnostic Gnosis
13458110 18 3396 2066 +1330 0xb26f9666... Titan Relay
13457513 20 3425 2095 +1330 0x856b0004... Ultra Sound
13458150 10 3278 1948 +1330 everstake 0x88a53ec4... BloXroute Regulated
13455302 7 3233 1904 +1329 gateway.fmas_lido 0x856b0004... Ultra Sound
13458108 2 3159 1831 +1328 gateway.fmas_lido 0x8527d16c... Ultra Sound
13459264 0 3129 1801 +1328 stakefish 0x852b0070... Agnostic Gnosis
13458134 3 3172 1845 +1327 gateway.fmas_lido 0x8527d16c... Ultra Sound
13457066 18 3391 2066 +1325 0xb26f9666... Titan Relay
13456122 1 3141 1816 +1325 gateway.fmas_lido 0x853b0078... Ultra Sound
13453282 9 3258 1934 +1324 bitstamp 0x856b0004... Agnostic Gnosis
13455390 5 3198 1875 +1323 p2porg 0x88a53ec4... BloXroute Max Profit
13459221 1 3138 1816 +1322 everstake 0x850b00e0... BloXroute Max Profit
13458748 0 3123 1801 +1322 p2porg 0x8527d16c... Ultra Sound
13456388 0 3122 1801 +1321 0x850b00e0... BloXroute Regulated
13455220 5 3194 1875 +1319 p2porg 0xb26f9666... BloXroute Regulated
13457303 18 3384 2066 +1318 blockdaemon 0x853b0078... Ultra Sound
13454538 2 3148 1831 +1317 0x8527d16c... Ultra Sound
13456716 5 3192 1875 +1317 p2porg 0x856b0004... Agnostic Gnosis
13459442 14 3324 2007 +1317 stakingfacilities_lido 0x856b0004... Ultra Sound
13459554 8 3235 1919 +1316 p2porg 0x853b0078... Agnostic Gnosis
13456021 11 3279 1963 +1316 0x8527d16c... Ultra Sound
13454275 1 3131 1816 +1315 kelp 0xb26f9666... Titan Relay
13459731 3 3160 1845 +1315 everstake 0x853b0078... BloXroute Max Profit
13456627 5 3188 1875 +1313 gateway.fmas_lido 0xac23f8cc... BloXroute Max Profit
13459496 0 3114 1801 +1313 0x88a53ec4... BloXroute Max Profit
13459173 1 3127 1816 +1311 p2porg 0x88a53ec4... BloXroute Max Profit
13458009 0 3112 1801 +1311 blockscape_lido Local Local
13454086 6 3195 1889 +1306 p2porg 0x853b0078... Agnostic Gnosis
13456060 0 3106 1801 +1305 gateway.fmas_lido 0x8527d16c... Ultra Sound
13457279 19 3385 2080 +1305 everstake 0xb67eaa5e... BloXroute Max Profit
13453248 1 3118 1816 +1302 0x856b0004... Aestus
13458816 8 3220 1919 +1301 bitstamp 0x8527d16c... Ultra Sound
13457914 8 3218 1919 +1299 p2porg Local Local
13459302 3 3144 1845 +1299 everstake 0xac23f8cc... BloXroute Max Profit
13455460 5 3173 1875 +1298 everstake 0x853b0078... Ultra Sound
13456433 8 3217 1919 +1298 p2porg 0x853b0078... Agnostic Gnosis
13459437 1 3113 1816 +1297 p2porg 0x856b0004... Ultra Sound
13455938 2 3126 1831 +1295 figment 0x88857150... Ultra Sound
13458425 15 3316 2022 +1294 0x88a53ec4... BloXroute Max Profit
13460331 6 3183 1889 +1294 p2porg 0xac23f8cc... BloXroute Max Profit
13456392 1 3109 1816 +1293 abyss_finance 0xb26f9666... BloXroute Max Profit
13453299 10 3241 1948 +1293 stakingfacilities_lido 0x853b0078... Agnostic Gnosis
13455769 1 3108 1816 +1292 0x853b0078... Agnostic Gnosis
13460319 3 3137 1845 +1292 0x853b0078... Ultra Sound
13453203 2 3122 1831 +1291 p2porg 0x8527d16c... Ultra Sound
13454526 0 3092 1801 +1291 kelp 0x8527d16c... Ultra Sound
13459757 12 3268 1978 +1290 everstake 0x850b00e0... BloXroute Max Profit
13459219 0 3091 1801 +1290 everstake 0x8527d16c... Ultra Sound
13454891 5 3163 1875 +1288 stakingfacilities_lido 0xb26f9666... BloXroute Max Profit
13456607 0 3089 1801 +1288 gateway.fmas_lido 0x8527d16c... Ultra Sound
13456362 0 3089 1801 +1288 figment 0x91a8729e... BloXroute Max Profit
13455974 3 3133 1845 +1288 0x88857150... Ultra Sound
13455144 3 3133 1845 +1288 figment 0x856b0004... Aestus
13454556 0 3088 1801 +1287 stakingfacilities_lido 0x853b0078... BloXroute Max Profit
13458827 9 3220 1934 +1286 p2porg 0x8527d16c... Ultra Sound
13455692 6 3174 1889 +1285 0x850b00e0... BloXroute Max Profit
13457116 8 3203 1919 +1284 ether.fi 0x8527d16c... Ultra Sound
13460366 16 3320 2036 +1284 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13459536 2 3114 1831 +1283 0xb26f9666... Titan Relay
13456264 9 3216 1934 +1282 p2porg 0x856b0004... Ultra Sound
13459279 5 3157 1875 +1282 0xb26f9666... BloXroute Max Profit
Total anomalies: 219

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})