Tue, Jan 27, 2026

Propagation anomalies - 2026-01-27

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-27' AND slot_start_date_time < '2026-01-27'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-27' AND slot_start_date_time < '2026-01-27'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-27' AND slot_start_date_time < '2026-01-27'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-27' AND slot_start_date_time < '2026-01-27'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-27' AND slot_start_date_time < '2026-01-27'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-27' AND slot_start_date_time < '2026-01-27'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-27' AND slot_start_date_time < '2026-01-27'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-27' AND slot_start_date_time < '2026-01-27'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,178
MEV blocks: 6,718 (93.6%)
Local blocks: 460 (6.4%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1778.0 + 22.72 × blob_count (R² = 0.020)
Residual σ = 638.5ms
Anomalies (>2σ slow): 258 (3.6%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13558176 5 5665 1892 +3773 whale_0x4f7e Local Local
13560512 0 5372 1778 +3594 upbit Local Local
13556653 0 5333 1778 +3555 solo_stakers Local Local
13554080 0 4286 1778 +2508 upbit Local Local
13554276 3 4306 1846 +2460 lido Local Local
13554479 0 4139 1778 +2361 everstake Local Local
13554520 0 3975 1778 +2197 lido Local Local
13559345 1 3980 1801 +2179 everstake 0x850b00e0... Flashbots
13556853 0 3934 1778 +2156 Local Local
13560640 6 3957 1914 +2043 senseinode_lido 0x8db2a99d... Ultra Sound
13554496 2 3805 1823 +1982 stakingfacilities_lido 0xb26f9666... Titan Relay
13555615 0 3746 1778 +1968 ether.fi 0x88857150... Ultra Sound
13556162 1 3689 1801 +1888 0xb26f9666... Titan Relay
13557102 4 3736 1869 +1867 ether.fi 0x850b00e0... BloXroute Max Profit
13558740 4 3725 1869 +1856 blockdaemon 0xb67eaa5e... BloXroute Regulated
13556317 1 3651 1801 +1850 0xb67eaa5e... Titan Relay
13558208 7 3778 1937 +1841 stakefish_lido 0x88a53ec4... BloXroute Max Profit
13554704 1 3640 1801 +1839 blockdaemon 0xb26f9666... Titan Relay
13556486 2 3661 1823 +1838 blockdaemon 0xb26f9666... Titan Relay
13559176 5 3709 1892 +1817 stakefish 0x88857150... Ultra Sound
13555653 7 3752 1937 +1815 everstake 0x853b0078... BloXroute Max Profit
13556855 5 3691 1892 +1799 0x855b00e6... BloXroute Max Profit
13555063 2 3619 1823 +1796 whale_0xdd6c 0xb26f9666... Titan Relay
13560168 0 3573 1778 +1795 everstake 0x88a53ec4... BloXroute Max Profit
13558580 5 3642 1892 +1750 0xb67eaa5e... Titan Relay
13557610 2 3570 1823 +1747 solo_stakers Local Local
13561191 9 3721 1983 +1738 0xb67eaa5e... BloXroute Regulated
13560740 3 3576 1846 +1730 0x8527d16c... Ultra Sound
13554740 2 3551 1823 +1728 figment 0xb26f9666... Ultra Sound
13555546 4 3592 1869 +1723 blockdaemon 0xb26f9666... Titan Relay
13557870 3 3569 1846 +1723 blockdaemon 0xb26f9666... Titan Relay
13560660 7 3658 1937 +1721 0x853b0078... Titan Relay
13556100 2 3543 1823 +1720 figment 0x91b123d8... BloXroute Regulated
13558188 8 3676 1960 +1716 stakefish_lido 0xb67eaa5e... BloXroute Regulated
13560708 6 3625 1914 +1711 0x853b0078... Ultra Sound
13558654 0 3456 1778 +1678 ether.fi 0xb26f9666... Aestus
13560416 6 3584 1914 +1670 everstake 0x853b0078... Ultra Sound
13558685 4 3536 1869 +1667 everstake 0x850b00e0... BloXroute Max Profit
13559126 8 3623 1960 +1663 0xb26f9666... Titan Relay
13554725 4 3530 1869 +1661 revolut 0x82c466b9... BloXroute Regulated
13556304 5 3551 1892 +1659 blockdaemon 0x8527d16c... Ultra Sound
13557512 1 3460 1801 +1659 0x8a850621... Titan Relay
13557651 6 3573 1914 +1659 0x8527d16c... Ultra Sound
13555598 1 3455 1801 +1654 blockdaemon 0x8a850621... Ultra Sound
13558719 10 3656 2005 +1651 0x8527d16c... Ultra Sound
13556527 6 3565 1914 +1651 blockdaemon 0xb26f9666... Titan Relay
13559980 7 3582 1937 +1645 blockdaemon 0xb67eaa5e... BloXroute Regulated
13558395 4 3509 1869 +1640 whale_0xdd6c 0xb26f9666... BloXroute Max Profit
13556812 2 3459 1823 +1636 0x82c466b9... BloXroute Regulated
13555232 1 3433 1801 +1632 ether.fi 0x855b00e6... BloXroute Max Profit
13557171 7 3569 1937 +1632 figment 0x856b0004... Ultra Sound
13557843 1 3431 1801 +1630 blockdaemon_lido 0xb67eaa5e... BloXroute Max Profit
13554367 5 3521 1892 +1629 0x8a850621... Ultra Sound
13555002 0 3407 1778 +1629 Local Local
13555254 9 3609 1983 +1626 blockdaemon 0xb26f9666... Titan Relay
13557908 6 3537 1914 +1623 0x8527d16c... Ultra Sound
13556626 10 3626 2005 +1621 0x8527d16c... Ultra Sound
13555600 9 3593 1983 +1610 0x88857150... Ultra Sound
13554381 5 3500 1892 +1608 everstake 0xb67eaa5e... BloXroute Regulated
13554113 4 3477 1869 +1608 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13557300 1 3406 1801 +1605 everstake 0x853b0078... BloXroute Max Profit
13559492 6 3513 1914 +1599 everstake 0x88a53ec4... BloXroute Regulated
13556864 0 3374 1778 +1596 p2porg 0xb26f9666... Titan Relay
13557557 6 3508 1914 +1594 0x8a850621... Titan Relay
13557047 12 3627 2051 +1576 0x8527d16c... Ultra Sound
13554628 6 3484 1914 +1570 0x88a53ec4... BloXroute Max Profit
13554204 2 3392 1823 +1569 blockdaemon_lido 0x8527d16c... Ultra Sound
13556361 2 3392 1823 +1569 whale_0xdd6c 0x8527d16c... Ultra Sound
13558154 2 3384 1823 +1561 ether.fi 0x8db2a99d... Flashbots
13558271 1 3352 1801 +1551 0xb26f9666... Titan Relay
13555075 10 3556 2005 +1551 blockdaemon_lido 0xb67eaa5e... Titan Relay
13556912 2 3374 1823 +1551 everstake 0xb26f9666... Titan Relay
13560883 1 3348 1801 +1547 blockdaemon 0x88a53ec4... BloXroute Regulated
13558147 8 3506 1960 +1546 everstake 0xb67eaa5e... BloXroute Regulated
13559659 4 3414 1869 +1545 everstake 0x853b0078... BloXroute Max Profit
13555073 11 3568 2028 +1540 blockdaemon_lido 0xb67eaa5e... Titan Relay
13554057 12 3588 2051 +1537 blockdaemon 0x853b0078... Ultra Sound
13559184 0 3314 1778 +1536 blockdaemon_lido 0xa0366397... Ultra Sound
13556892 1 3331 1801 +1530 blockdaemon 0x88a53ec4... BloXroute Regulated
13557644 1 3317 1801 +1516 everstake 0x8527d16c... Ultra Sound
13556262 1 3315 1801 +1514 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13554444 4 3379 1869 +1510 0x88a53ec4... BloXroute Max Profit
13557145 2 3333 1823 +1510 blockdaemon 0x850b00e0... BloXroute Regulated
13559196 2 3331 1823 +1508 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13554212 4 3374 1869 +1505 blockdaemon_lido 0xb26f9666... Titan Relay
13556084 1 3298 1801 +1497 everstake 0xb26f9666... Aestus
13554039 2 3320 1823 +1497 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13554657 10 3501 2005 +1496 everstake 0x8527d16c... Ultra Sound
13559283 2 3314 1823 +1491 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13555792 1 3290 1801 +1489 ether.fi 0x82c466b9... EthGas
13558282 0 3266 1778 +1488 solo_stakers 0x852b0070... Agnostic Gnosis
13556047 5 3378 1892 +1486 blockdaemon_lido 0x860d4173... BloXroute Max Profit
13557426 5 3376 1892 +1484 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13560686 17 3647 2164 +1483 0x853b0078... Titan Relay
13557430 0 3256 1778 +1478 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13555041 9 3460 1983 +1477 0x853b0078... Ultra Sound
13557781 4 3346 1869 +1477 everstake 0xb26f9666... Titan Relay
13558585 6 3389 1914 +1475 blockdaemon_lido 0xb67eaa5e... Titan Relay
13556180 13 3548 2073 +1475 blockdaemon 0x853b0078... Ultra Sound
13557119 1 3273 1801 +1472 0x88a53ec4... BloXroute Regulated
13560676 1 3273 1801 +1472 everstake 0xb67eaa5e... BloXroute Max Profit
13560027 0 3250 1778 +1472 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13554856 4 3340 1869 +1471 blockdaemon_lido 0x91b123d8... BloXroute Regulated
13560754 6 3383 1914 +1469 gateway.fmas_lido 0x88a53ec4... BloXroute Regulated
13554148 4 3335 1869 +1466 0xb26f9666... Titan Relay
13560870 15 3584 2119 +1465 0x8527d16c... Ultra Sound
13558066 4 3331 1869 +1462 blockdaemon 0xb67eaa5e... BloXroute Regulated
13555381 2 3284 1823 +1461 everstake 0xac23f8cc... Flashbots
13559785 12 3510 2051 +1459 0x88a53ec4... BloXroute Max Profit
13554377 12 3507 2051 +1456 blockdaemon_lido 0x855b00e6... Ultra Sound
13557607 0 3234 1778 +1456 blockdaemon 0x91a8729e... BloXroute Regulated
13560033 7 3392 1937 +1455 luno 0x8527d16c... Ultra Sound
13557708 3 3300 1846 +1454 0xb26f9666... Titan Relay
13558858 6 3365 1914 +1451 0x88a53ec4... BloXroute Regulated
13556719 12 3498 2051 +1447 everstake 0xb67eaa5e... BloXroute Max Profit
13559705 8 3406 1960 +1446 0x88a53ec4... BloXroute Max Profit
13560097 5 3336 1892 +1444 0xb67eaa5e... BloXroute Max Profit
13559205 7 3381 1937 +1444 blockdaemon_lido 0x853b0078... Ultra Sound
13559104 6 3357 1914 +1443 stakingfacilities_lido 0x823e0146... Flashbots
13557784 3 3287 1846 +1441 everstake 0x856b0004... Agnostic Gnosis
13555185 2 3264 1823 +1441 luno 0x82c466b9... BloXroute Regulated
13556123 0 3218 1778 +1440 everstake 0x91a8729e... Ultra Sound
13554187 1 3239 1801 +1438 0xb67eaa5e... BloXroute Regulated
13556386 4 3305 1869 +1436 blockdaemon_lido 0xb26f9666... Titan Relay
13559158 0 3214 1778 +1436 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13555560 4 3304 1869 +1435 0xb26f9666... Titan Relay
13560723 11 3461 2028 +1433 0x88a53ec4... BloXroute Max Profit
13561013 0 3211 1778 +1433 revolut 0xa1da2978... Ultra Sound
13558317 6 3346 1914 +1432 luno 0xb26f9666... Titan Relay
13556220 10 3433 2005 +1428 everstake 0xb7c5beef... Titan Relay
13556322 8 3386 1960 +1426 luno 0x853b0078... Ultra Sound
13558308 3 3271 1846 +1425 blockdaemon_lido 0xb26f9666... Titan Relay
13558099 1 3224 1801 +1423 0xb7c5e609... BloXroute Max Profit
13558579 5 3310 1892 +1418 0x857b0038... Ultra Sound
13554944 18 3605 2187 +1418 stakefish 0xb67eaa5e... BloXroute Max Profit
13559480 12 3464 2051 +1413 blockdaemon 0x88a53ec4... BloXroute Regulated
13557551 4 3282 1869 +1413 everstake 0x853b0078... BloXroute Max Profit
13559912 7 3348 1937 +1411 everstake 0x88a53ec4... BloXroute Max Profit
13560668 7 3344 1937 +1407 luno 0x850b00e0... BloXroute Regulated
13555838 8 3366 1960 +1406 0xb26f9666... BloXroute Max Profit
13554294 4 3273 1869 +1404 0x88857150... Ultra Sound
13558237 0 3181 1778 +1403 0x91a8729e... Aestus
13560485 6 3308 1914 +1394 blockdaemon_lido 0x8527d16c... Ultra Sound
13559197 0 3170 1778 +1392 everstake 0xb67eaa5e... BloXroute Max Profit
13560198 7 3327 1937 +1390 0x850b00e0... BloXroute Max Profit
13558064 10 3395 2005 +1390 everstake 0x8527d16c... Ultra Sound
13559703 8 3349 1960 +1389 blockdaemon_lido 0x853b0078... Ultra Sound
13554606 11 3412 2028 +1384 0xb67eaa5e... BloXroute Max Profit
13554995 1 3184 1801 +1383 0x88857150... Ultra Sound
13560625 1 3184 1801 +1383 everstake 0x853b0078... Agnostic Gnosis
13559169 6 3297 1914 +1383 stakingfacilities_lido 0xb67eaa5e... BloXroute Max Profit
13558436 13 3456 2073 +1383 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13556008 4 3249 1869 +1380 0x8527d16c... Ultra Sound
13559449 4 3249 1869 +1380 blockdaemon_lido 0x853b0078... Ultra Sound
13556880 6 3294 1914 +1380 0xb26f9666... Titan Relay
13556048 2 3203 1823 +1380 everstake 0x8527d16c... Ultra Sound
13554131 9 3362 1983 +1379 luno 0x856b0004... Ultra Sound
13558242 9 3360 1983 +1377 0xb67eaa5e... BloXroute Regulated
13558765 1 3177 1801 +1376 0xb67eaa5e... BloXroute Max Profit
13555513 7 3313 1937 +1376 blockdaemon_lido 0xb26f9666... Titan Relay
13557778 11 3403 2028 +1375 0x850b00e0... BloXroute Regulated
13559040 6 3285 1914 +1371 p2porg 0xb26f9666... Titan Relay
13560960 1 3171 1801 +1370 senseinode_lido 0x82c466b9... Flashbots
13555628 1 3169 1801 +1368 0x857b0038... Ultra Sound
13559206 3 3211 1846 +1365 ether.fi 0x88a53ec4... BloXroute Max Profit
13555197 6 3279 1914 +1365 blockdaemon 0x82c466b9... BloXroute Regulated
13556832 9 3346 1983 +1363 stakingfacilities_lido 0x8527d16c... Ultra Sound
13559925 8 3323 1960 +1363 everstake 0x88a53ec4... BloXroute Max Profit
13555204 15 3482 2119 +1363 everstake 0x8db2a99d... Flashbots
13555695 4 3229 1869 +1360 p2porg 0xb26f9666... Titan Relay
13560259 8 3319 1960 +1359 blockdaemon 0x853b0078... Ultra Sound
13558474 0 3135 1778 +1357 everstake 0xb26f9666... Titan Relay
13554287 15 3475 2119 +1356 0xb67eaa5e... BloXroute Max Profit
13554633 2 3179 1823 +1356 0x8a850621... Ultra Sound
13559638 11 3383 2028 +1355 0x88a53ec4... BloXroute Regulated
13556515 8 3314 1960 +1354 mantle 0x8527d16c... Ultra Sound
13556708 8 3311 1960 +1351 0x8db2a99d... BloXroute Max Profit
13557628 7 3288 1937 +1351 0x88a53ec4... BloXroute Regulated
13560670 0 3127 1778 +1349 p2porg 0x852b0070... Aestus
13561181 7 3285 1937 +1348 0xb67eaa5e... BloXroute Max Profit
13555478 6 3262 1914 +1348 0x850b00e0... BloXroute Regulated
13560452 1 3148 1801 +1347 everstake 0x88a53ec4... BloXroute Max Profit
13558219 14 3442 2096 +1346 blockdaemon 0xb26f9666... Titan Relay
13557775 11 3373 2028 +1345 0xb26f9666... BloXroute Max Profit
13554184 12 3393 2051 +1342 p2porg 0x853b0078... Titan Relay
13559402 5 3232 1892 +1340 p2porg 0x853b0078... Aestus
13557386 5 3232 1892 +1340 blockdaemon_lido 0xb26f9666... Titan Relay
13556018 5 3226 1892 +1334 0xb67eaa5e... BloXroute Regulated
13556820 1 3134 1801 +1333 0x82c466b9... Flashbots
13554077 14 3429 2096 +1333 luno 0x8527d16c... Ultra Sound
13555527 6 3246 1914 +1332 p2porg 0xb67eaa5e... BloXroute Max Profit
13560012 1 3131 1801 +1330 0x850b00e0... BloXroute Max Profit
13557461 2 3152 1823 +1329 p2porg 0x856b0004... Agnostic Gnosis
13556987 7 3265 1937 +1328 0xb67eaa5e... BloXroute Regulated
13556867 3 3174 1846 +1328 0x8527d16c... Ultra Sound
13554939 3 3172 1846 +1326 ether.fi 0x853b0078... Agnostic Gnosis
13554278 6 3240 1914 +1326 p2porg 0xb26f9666... Titan Relay
13560786 0 3102 1778 +1324 0x9589cf28... Agnostic Gnosis
13560843 10 3329 2005 +1324 0x88a53ec4... BloXroute Regulated
13560569 2 3146 1823 +1323 0x850b00e0... BloXroute Regulated
13558356 0 3100 1778 +1322 Local Local
13557733 0 3099 1778 +1321 0x856b0004... Agnostic Gnosis
13560697 7 3258 1937 +1321 everstake 0xb67eaa5e... BloXroute Max Profit
13555137 4 3189 1869 +1320 p2porg 0x88a53ec4... BloXroute Max Profit
13560016 5 3211 1892 +1319 everstake 0x853b0078... Ultra Sound
13558749 5 3211 1892 +1319 everstake 0x88a53ec4... BloXroute Max Profit
13555530 5 3207 1892 +1315 p2porg 0xb26f9666... BloXroute Max Profit
13557542 12 3366 2051 +1315 0x88510a78... BloXroute Regulated
13555082 1 3115 1801 +1314 p2porg 0xb67eaa5e... BloXroute Max Profit
13558225 7 3250 1937 +1313 0xb26f9666... Titan Relay
13557014 3 3159 1846 +1313 ether.fi 0xb67eaa5e... BloXroute Regulated
13555198 7 3248 1937 +1311 figment 0x853b0078... Ultra Sound
13555404 7 3248 1937 +1311 0x91b123d8... BloXroute Regulated
13559926 2 3132 1823 +1309 0x8527d16c... Ultra Sound
13554021 10 3313 2005 +1308 everstake 0x853b0078... BloXroute Max Profit
13555725 5 3199 1892 +1307 bitstamp 0x8527d16c... Ultra Sound
13560235 0 3085 1778 +1307 0x8527d16c... Ultra Sound
13557649 3 3152 1846 +1306 0xb26f9666... Titan Relay
13555569 5 3196 1892 +1304 figment 0xb26f9666... Titan Relay
13556384 11 3332 2028 +1304 0x82c466b9... EthGas
13558261 10 3309 2005 +1304 everstake 0xb26f9666... Titan Relay
13559731 2 3126 1823 +1303 kelp 0x8527d16c... Ultra Sound
13556138 2 3126 1823 +1303 0x850b00e0... BloXroute Regulated
13555646 0 3080 1778 +1302 0x83bee517... Flashbots
13560868 4 3170 1869 +1301 0x8527d16c... Ultra Sound
13554782 1 3101 1801 +1300 abyss_finance 0x853b0078... BloXroute Max Profit
13556457 2 3123 1823 +1300 p2porg 0x823e0146... Flashbots
13555388 2 3123 1823 +1300 p2porg 0x853b0078... Aestus
13557854 12 3348 2051 +1297 everstake 0x856b0004... Agnostic Gnosis
13554813 5 3188 1892 +1296 0x8a850621... Titan Relay
13560903 2 3119 1823 +1296 0x88857150... Ultra Sound
13560683 5 3187 1892 +1295 0x853b0078... Titan Relay
13558054 1 3096 1801 +1295 0xb26f9666... BloXroute Regulated
13558771 0 3073 1778 +1295 p2porg 0x8527d16c... Ultra Sound
13559264 3 3141 1846 +1295 0xb7c5beef... Titan Relay
13555395 0 3072 1778 +1294 abyss_finance Local Local
13558514 9 3274 1983 +1291 0xb67eaa5e... BloXroute Max Profit
13555275 6 3204 1914 +1290 0x856b0004... Aestus
13560414 1 3090 1801 +1289 gateway.fmas_lido 0x823e0146... Flashbots
13558653 9 3271 1983 +1288 0xb26f9666... Titan Relay
13558411 0 3066 1778 +1288 0x8a850621... Titan Relay
13559027 9 3270 1983 +1287 0x88857150... Ultra Sound
13554107 4 3155 1869 +1286 0x850b00e0... BloXroute Max Profit
13554438 0 3064 1778 +1286 p2porg 0x8527d16c... Ultra Sound
13558899 6 3200 1914 +1286 everstake 0xb7c5beef... Ultra Sound
13555456 4 3154 1869 +1285 0x88a53ec4... BloXroute Max Profit
13559913 0 3063 1778 +1285 blockscape_lido Local Local
13560406 5 3176 1892 +1284 0x8527d16c... Ultra Sound
13557906 5 3175 1892 +1283 p2porg 0x8527d16c... Ultra Sound
13556777 1 3083 1801 +1282 0xb26f9666... BloXroute Max Profit
13557141 3 3127 1846 +1281 0x8db2a99d... Flashbots
13559300 10 3286 2005 +1281 blockdaemon 0xb26f9666... Titan Relay
13559709 1 3081 1801 +1280 gateway.fmas_lido 0x8527d16c... Ultra Sound
13555920 1 3081 1801 +1280 ether.fi 0xb26f9666... Titan Relay
13554733 0 3058 1778 +1280 ether.fi 0x8527d16c... Ultra Sound
13558691 0 3058 1778 +1280 0x88a53ec4... BloXroute Max Profit
13554062 1 3080 1801 +1279 p2porg 0x856b0004... Agnostic Gnosis
13559443 1 3080 1801 +1279 ether.fi 0x853b0078... Ultra Sound
Total anomalies: 258

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})