Thu, Jan 29, 2026 Latest

Propagation anomalies

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-29' AND slot_start_date_time < '2026-01-29'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-29' AND slot_start_date_time < '2026-01-29'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-29' AND slot_start_date_time < '2026-01-29'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-29' AND slot_start_date_time < '2026-01-29'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-29' AND slot_start_date_time < '2026-01-29'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-29' AND slot_start_date_time < '2026-01-29'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-29' AND slot_start_date_time < '2026-01-29'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-29' AND slot_start_date_time < '2026-01-29'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,189
MEV blocks: 6,696 (93.1%)
Local blocks: 493 (6.9%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1805.9 + 20.78 × blob_count (R² = 0.019)
Residual σ = 653.2ms
Anomalies (>2σ slow): 240 (3.3%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13574754 0 7126 1806 +5320 solo_stakers Local Local
13573601 0 6071 1806 +4265 consensyscodefi_lido Local Local
13574996 0 6027 1806 +4221 whale_0x3212 Local Local
13569505 8 5122 1972 +3150 bridgetower_lido Local Local
13573620 0 4739 1806 +2933 solo_stakers Local Local
13570048 0 4733 1806 +2927 upbit Local Local
13572000 0 4698 1806 +2892 Local Local
13571835 0 4569 1806 +2763 lido Local Local
13569056 0 4414 1806 +2608 Local Local
13575488 0 4396 1806 +2590 ether.fi Local Local
13572152 0 4349 1806 +2543 ether.fi Local Local
13569760 0 4288 1806 +2482 everstake Local Local
13569260 0 4264 1806 +2458 ether.fi Local Local
13573312 0 4223 1806 +2417 upbit Local Local
13573600 12 4439 2055 +2384 upbit Local Local
13571200 0 4170 1806 +2364 blockdaemon_lido Local Local
13569274 4 4185 1889 +2296 everstake 0xb26f9666... Aestus
13574284 0 4064 1806 +2258 whale_0x16bf Local Local
13570612 6 4174 1931 +2243 everstake 0xb26f9666... Titan Relay
13568553 0 3951 1806 +2145 rockawayx_lido Local Local
13574964 0 3903 1806 +2097 figment Local Local
13568939 0 3860 1806 +2054 revolut Local Local
13569216 0 3848 1806 +2042 Local Local
13575209 10 4015 2014 +2001 solo_stakers 0xb67eaa5e... BloXroute Regulated
13570504 1 3779 1827 +1952 stakefish_lido 0x88857150... Ultra Sound
13574635 0 3723 1806 +1917 0x852b0070... Aestus
13572128 1 3713 1827 +1886 figment 0xb67eaa5e... BloXroute Regulated
13570144 2 3714 1847 +1867 blockdaemon 0x850b00e0... BloXroute Regulated
13574612 4 3755 1889 +1866 0xb67eaa5e... Titan Relay
13573575 0 3611 1806 +1805 0xb26f9666... Titan Relay
13575367 0 3591 1806 +1785 0x88a53ec4... BloXroute Regulated
13570028 1 3610 1827 +1783 stakefish_lido 0x8db2a99d... Flashbots
13571951 8 3749 1972 +1777 0x850b00e0... BloXroute Regulated
13568752 0 3581 1806 +1775 0x99dbe3e8... Ultra Sound
13568874 7 3722 1951 +1771 figment 0x850b00e0... BloXroute Regulated
13569850 5 3674 1910 +1764 ether.fi 0x82c466b9... EthGas
13568614 3 3615 1868 +1747 0xb67eaa5e... BloXroute Regulated
13571170 5 3655 1910 +1745 0x8527d16c... Ultra Sound
13574758 0 3547 1806 +1741 0x88510a78... BloXroute Regulated
13573910 0 3540 1806 +1734 0xb67eaa5e... Titan Relay
13569899 7 3680 1951 +1729 figment 0xb67eaa5e... BloXroute Regulated
13570071 6 3659 1931 +1728 blockdaemon 0xb26f9666... Titan Relay
13572211 9 3718 1993 +1725 blockdaemon 0xb26f9666... Titan Relay
13571187 5 3624 1910 +1714 0xb26f9666... Titan Relay
13572699 5 3618 1910 +1708 0x8527d16c... Ultra Sound
13570276 9 3698 1993 +1705 blockdaemon 0x850b00e0... Ultra Sound
13573209 9 3693 1993 +1700 0x850b00e0... Ultra Sound
13573009 3 3554 1868 +1686 blockdaemon_lido 0x8527d16c... Ultra Sound
13570024 11 3719 2034 +1685 stakefish 0xac23f8cc... BloXroute Max Profit
13575199 11 3719 2034 +1685 whale_0xdd6c 0xb67eaa5e... BloXroute Max Profit
13569741 11 3712 2034 +1678 blockdaemon 0xb26f9666... Titan Relay
13573699 5 3582 1910 +1672 0xb67eaa5e... Titan Relay
13573360 6 3600 1931 +1669 blockdaemon 0x853b0078... Ultra Sound
13572672 8 3639 1972 +1667 bitstamp 0xb67eaa5e... BloXroute Regulated
13573024 3 3533 1868 +1665 stakefish 0x8527d16c... Ultra Sound
13574719 6 3592 1931 +1661 0x8527d16c... Ultra Sound
13572571 1 3484 1827 +1657 figment 0xb67eaa5e... BloXroute Regulated
13573536 6 3585 1931 +1654 stakingfacilities_lido 0xb26f9666... Titan Relay
13572536 1 3480 1827 +1653 ether.fi 0x853b0078... Aestus
13571233 10 3666 2014 +1652 0x8527d16c... Ultra Sound
13570609 3 3519 1868 +1651 everstake 0x88a53ec4... BloXroute Max Profit
13574196 3 3519 1868 +1651 lido 0xb67eaa5e... BloXroute Regulated
13571181 3 3514 1868 +1646 ether.fi 0xb67eaa5e... BloXroute Max Profit
13569611 1 3459 1827 +1632 blockdaemon_lido 0xb26f9666... Titan Relay
13573214 1 3457 1827 +1630 0xb4ce6162... Ultra Sound
13568512 18 3809 2180 +1629 consensyscodefi_lido 0xb67eaa5e... BloXroute Max Profit
13570354 10 3642 2014 +1628 0x8527d16c... Ultra Sound
13574912 0 3428 1806 +1622 stakingfacilities_lido 0x853b0078... Aestus
13572581 8 3593 1972 +1621 ether.fi 0xb26f9666... Titan Relay
13571284 6 3550 1931 +1619 everstake 0x856b0004... BloXroute Max Profit
13572331 10 3632 2014 +1618 0x8527d16c... Ultra Sound
13573791 9 3609 1993 +1616 blockdaemon 0x8527d16c... Ultra Sound
13568491 11 3648 2034 +1614 0x853b0078... Ultra Sound
13573655 10 3623 2014 +1609 blockdaemon 0xb26f9666... Titan Relay
13575583 0 3409 1806 +1603 blockdaemon_lido 0xb26f9666... Titan Relay
13572977 19 3802 2201 +1601 0x8527d16c... Ultra Sound
13568906 6 3531 1931 +1600 luno 0x853b0078... Ultra Sound
13575368 0 3404 1806 +1598 blockdaemon_lido 0x88857150... Ultra Sound
13570595 4 3484 1889 +1595 blockdaemon_lido 0x88857150... Ultra Sound
13575228 8 3566 1972 +1594 0x88a53ec4... BloXroute Max Profit
13569170 12 3643 2055 +1588 blockdaemon 0xb26f9666... Ultra Sound
13575444 5 3497 1910 +1587 everstake 0x88a53ec4... BloXroute Max Profit
13570672 14 3672 2097 +1575 0x88a53ec4... BloXroute Max Profit
13572635 6 3500 1931 +1569 everstake 0x853b0078... Ultra Sound
13575167 0 3374 1806 +1568 blockdaemon_lido 0xb67eaa5e... Titan Relay
13573984 0 3372 1806 +1566 bitstamp 0x91a8729e... BloXroute Max Profit
13573127 13 3640 2076 +1564 0xb67eaa5e... BloXroute Regulated
13570204 2 3409 1847 +1562 blockdaemon_lido 0xb67eaa5e... Titan Relay
13574892 8 3530 1972 +1558 0xb67eaa5e... BloXroute Max Profit
13571553 14 3654 2097 +1557 luno 0x8527d16c... Ultra Sound
13572336 5 3456 1910 +1546 ether.fi 0x853b0078... Aestus
13574106 0 3348 1806 +1542 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13574240 6 3464 1931 +1533 stakingfacilities_lido 0xb67eaa5e... BloXroute Max Profit
13573153 16 3670 2138 +1532 0x855b00e6... Ultra Sound
13569618 20 3750 2221 +1529 figment 0x853b0078... BloXroute Regulated
13572210 0 3332 1806 +1526 everstake 0x88a53ec4... BloXroute Max Profit
13572657 4 3415 1889 +1526 0x856b0004... Ultra Sound
13568596 1 3340 1827 +1513 ether.fi 0xb26f9666... BloXroute Max Profit
13568522 0 3319 1806 +1513 whale_0xdd6c 0x8527d16c... Ultra Sound
13575516 0 3316 1806 +1510 everstake 0xb26f9666... Titan Relay
13575204 3 3375 1868 +1507 blockdaemon 0x8a850621... Ultra Sound
13575237 7 3457 1951 +1506 blockdaemon_lido 0xb26f9666... Titan Relay
13573935 0 3305 1806 +1499 everstake 0x851b00b1... BloXroute Max Profit
13569415 2 3345 1847 +1498 ether.fi 0x88a53ec4... BloXroute Regulated
13574045 0 3293 1806 +1487 everstake 0xb67eaa5e... BloXroute Regulated
13572159 6 3415 1931 +1484 ether.fi 0x823e0146... BloXroute Max Profit
13570298 2 3331 1847 +1484 0xb26f9666... Titan Relay
13569493 2 3331 1847 +1484 everstake 0xb26f9666... Titan Relay
13572371 0 3289 1806 +1483 blockdaemon_lido 0xb26f9666... Titan Relay
13569770 1 3309 1827 +1482 blockdaemon 0xb26f9666... Titan Relay
13574411 1 3308 1827 +1481 blockdaemon 0xb26f9666... Titan Relay
13568581 4 3368 1889 +1479 whale_0x7c1b 0x88a53ec4... BloXroute Max Profit
13568888 4 3367 1889 +1478 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13570943 2 3318 1847 +1471 0xb4ce6162... Ultra Sound
13569509 5 3375 1910 +1465 0x850b00e0... BloXroute Regulated
13574093 11 3498 2034 +1464 p2porg 0xb26f9666... BloXroute Regulated
13570387 13 3539 2076 +1463 blockdaemon 0x857b0038... Ultra Sound
13572945 0 3266 1806 +1460 blockdaemon 0xb26f9666... Titan Relay
13574669 0 3265 1806 +1459 blockdaemon_lido 0x88510a78... BloXroute Regulated
13570925 6 3388 1931 +1457 everstake 0x853b0078... Agnostic Gnosis
13574222 12 3512 2055 +1457 nethermind_lido 0xb67eaa5e... BloXroute Regulated
13569867 2 3301 1847 +1454 Local Local
13571332 1 3277 1827 +1450 blockdaemon 0x850b00e0... BloXroute Regulated
13571919 8 3421 1972 +1449 blockdaemon_lido 0x88857150... Ultra Sound
13570536 1 3274 1827 +1447 0xb26f9666... Titan Relay
13569864 8 3419 1972 +1447 0x88a53ec4... BloXroute Regulated
13573290 3 3309 1868 +1441 revolut 0x88a53ec4... BloXroute Regulated
13573551 11 3473 2034 +1439 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13569042 1 3265 1827 +1438 0xb67eaa5e... BloXroute Regulated
13573146 12 3492 2055 +1437 0x8a850621... Ultra Sound
13570737 7 3386 1951 +1435 blockdaemon 0x853b0078... Ultra Sound
13571299 4 3323 1889 +1434 everstake 0x856b0004... BloXroute Max Profit
13570861 5 3343 1910 +1433 luno 0xb26f9666... Titan Relay
13573709 0 3239 1806 +1433 0x8527d16c... Ultra Sound
13569844 3 3298 1868 +1430 0xa230e2cf... Flashbots
13572685 12 3484 2055 +1429 ether.fi 0xb26f9666... Titan Relay
13570953 0 3234 1806 +1428 everstake 0x88a53ec4... BloXroute Regulated
13570133 7 3374 1951 +1423 blockdaemon_lido 0xb26f9666... Titan Relay
13570775 5 3327 1910 +1417 revolut 0xb26f9666... Titan Relay
13568816 6 3346 1931 +1415 everstake 0xb67eaa5e... BloXroute Max Profit
13570901 6 3344 1931 +1413 blockdaemon 0xb67eaa5e... BloXroute Regulated
13573671 5 3323 1910 +1413 blockdaemon 0x8527d16c... Ultra Sound
13569231 0 3219 1806 +1413 blockdaemon 0x851b00b1... Ultra Sound
13570340 3 3278 1868 +1410 revolut 0xb26f9666... Titan Relay
13573254 6 3340 1931 +1409 blockdaemon 0xb67eaa5e... BloXroute Regulated
13568571 5 3319 1910 +1409 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13569674 7 3358 1951 +1407 blockdaemon_lido 0xb26f9666... Titan Relay
13575509 8 3378 1972 +1406 blockdaemon_lido 0xb26f9666... Titan Relay
13572941 0 3210 1806 +1404 0xb26f9666... BloXroute Regulated
13569999 8 3375 1972 +1403 blockdaemon_lido 0xb26f9666... Titan Relay
13569256 7 3353 1951 +1402 kelp 0xb26f9666... Aestus
13569848 8 3372 1972 +1400 ether.fi 0xb26f9666... Titan Relay
13568919 10 3413 2014 +1399 0xb4ce6162... Ultra Sound
13568803 16 3530 2138 +1392 blockdaemon 0x853b0078... Ultra Sound
13568566 9 3383 1993 +1390 0x88a53ec4... BloXroute Max Profit
13575210 4 3276 1889 +1387 blockscape_lido 0x8c4ed5e2... Titan Relay
13572562 0 3192 1806 +1386 0x8a850621... Ultra Sound
13572773 8 3358 1972 +1386 everstake 0x8527d16c... Ultra Sound
13570618 15 3502 2118 +1384 stakingfacilities_lido 0x8527d16c... Ultra Sound
13575402 5 3294 1910 +1384 0x88a53ec4... BloXroute Regulated
13575172 8 3355 1972 +1383 blockdaemon Local Local
13568840 10 3395 2014 +1381 everstake 0x850b00e0... BloXroute Max Profit
13570355 1 3208 1827 +1381 figment 0xb67eaa5e... BloXroute Regulated
13574252 0 3187 1806 +1381 0xb26f9666... Titan Relay
13569910 3 3249 1868 +1381 bitstamp 0xb67eaa5e... BloXroute Regulated
13572780 3 3248 1868 +1380 0xb26f9666... Titan Relay
13573016 7 3331 1951 +1380 0xb67eaa5e... BloXroute Regulated
13575150 1 3204 1827 +1377 everstake 0xb67eaa5e... BloXroute Max Profit
13575002 9 3369 1993 +1376 p2porg 0x850b00e0... BloXroute Max Profit
13569878 0 3181 1806 +1375 p2porg 0x852b0070... Ultra Sound
13570686 6 3302 1931 +1371 everstake 0xb26f9666... Titan Relay
13572434 5 3281 1910 +1371 blockdaemon_lido 0xb26f9666... Titan Relay
13570602 0 3174 1806 +1368 0x91a8729e... BloXroute Max Profit
13572787 5 3277 1910 +1367 everstake 0xb26f9666... Titan Relay
13569821 14 3463 2097 +1366 0x850b00e0... BloXroute Max Profit
13575096 9 3358 1993 +1365 everstake 0x8db2a99d... BloXroute Max Profit
13573413 1 3191 1827 +1364 everstake 0x853b0078... Agnostic Gnosis
13571261 2 3211 1847 +1364 blockdaemon 0xb7c5beef... BloXroute Regulated
13572622 0 3169 1806 +1363 ether.fi 0x851b00b1... BloXroute Max Profit
13575332 8 3333 1972 +1361 ether.fi 0xb26f9666... EthGas
13573826 12 3416 2055 +1361 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13569312 4 3249 1889 +1360 senseinode_lido 0x850b00e0... Ultra Sound
13570132 11 3394 2034 +1360 whale_0xdd6c 0xb26f9666... Titan Relay
13574150 2 3207 1847 +1360 everstake 0xb26f9666... Titan Relay
13568962 7 3310 1951 +1359 blockdaemon_lido 0xb26f9666... Titan Relay
13569719 5 3268 1910 +1358 0xb26f9666... Titan Relay
13575048 3 3226 1868 +1358 everstake 0x88a53ec4... BloXroute Regulated
13573907 20 3579 2221 +1358 ether.fi 0x853b0078... BloXroute Regulated
13574548 2 3203 1847 +1356 p2porg 0x853b0078... BloXroute Regulated
13572695 0 3160 1806 +1354 0x8527d16c... Ultra Sound
13572541 8 3326 1972 +1354 figment 0x850b00e0... BloXroute Max Profit
13568989 3 3222 1868 +1354 0x8a850621... Ultra Sound
13570221 1 3180 1827 +1353 coinbase 0x8a850621... Ultra Sound
13568624 9 3346 1993 +1353 0x88a53ec4... BloXroute Max Profit
13572197 9 3345 1993 +1352 blockdaemon 0x88857150... Ultra Sound
13573035 0 3158 1806 +1352 everstake 0xb26f9666... Titan Relay
13569833 6 3281 1931 +1350 0x8527d16c... Ultra Sound
13574649 5 3258 1910 +1348 p2porg 0x850b00e0... BloXroute Max Profit
13569745 0 3152 1806 +1346 p2porg 0x852b0070... Aestus
13574180 5 3255 1910 +1345 0xb67eaa5e... BloXroute Max Profit
13575547 6 3274 1931 +1343 0x88a53ec4... BloXroute Regulated
13574701 5 3252 1910 +1342 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13570894 4 3231 1889 +1342 everstake 0xb26f9666... Titan Relay
13575054 11 3376 2034 +1342 luno 0x853b0078... Ultra Sound
13568814 1 3167 1827 +1340 everstake 0xb26f9666... Titan Relay
13568578 12 3395 2055 +1340 luno 0x853b0078... Ultra Sound
13571899 4 3228 1889 +1339 coinbase 0x8527d16c... Ultra Sound
13573820 12 3394 2055 +1339 0x88a53ec4... BloXroute Max Profit
13573008 4 3227 1889 +1338 blockdaemon 0x88857150... Ultra Sound
13569842 8 3310 1972 +1338 stakingfacilities_lido 0x8527d16c... Ultra Sound
13575430 5 3247 1910 +1337 everstake 0xb26f9666... Titan Relay
13574366 0 3142 1806 +1336 0x823e0146... BloXroute Max Profit
13568936 7 3287 1951 +1336 0x88857150... Ultra Sound
13571812 1 3161 1827 +1334 0xb26f9666... Titan Relay
13575315 0 3140 1806 +1334 0xb26f9666... BloXroute Regulated
13568698 0 3139 1806 +1333 ether.fi 0x8a850621... EthGas
13575460 8 3302 1972 +1330 everstake 0xb26f9666... Titan Relay
13573842 0 3134 1806 +1328 abyss_finance 0x99dbe3e8... Ultra Sound
13575415 3 3196 1868 +1328 p2porg 0x850b00e0... BloXroute Regulated
13572164 0 3131 1806 +1325 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13568797 10 3335 2014 +1321 everstake 0xb26f9666... Titan Relay
13574961 9 3314 1993 +1321 0x8527d16c... Ultra Sound
13574921 0 3127 1806 +1321 0xb26f9666... Titan Relay
13568770 0 3127 1806 +1321 p2porg 0x91a8729e... BloXroute Max Profit
13571517 6 3251 1931 +1320 0xb26f9666... BloXroute Max Profit
13575000 8 3292 1972 +1320 stakingfacilities_lido 0x88a53ec4... BloXroute Regulated
13570584 6 3250 1931 +1319 0x8527d16c... Ultra Sound
13573255 8 3291 1972 +1319 blockdaemon_lido 0xb7c5beef... Titan Relay
13569651 8 3290 1972 +1318 0x88a53ec4... BloXroute Regulated
13574414 3 3185 1868 +1317 0xb26f9666... Titan Relay
13575271 3 3184 1868 +1316 0x850b00e0... BloXroute Regulated
13573721 7 3267 1951 +1316 p2porg 0x850b00e0... BloXroute Max Profit
13574864 1 3141 1827 +1314 0xb67eaa5e... BloXroute Regulated
13574831 3 3181 1868 +1313 p2porg 0x88a53ec4... BloXroute Max Profit
13574705 4 3198 1889 +1309 nethermind_lido 0xb67eaa5e... BloXroute Regulated
13574741 0 3114 1806 +1308 0x91a8729e... BloXroute Max Profit
13572814 13 3384 2076 +1308 0x850b00e0... BloXroute Regulated
13572118 6 3238 1931 +1307 everstake 0x853b0078... Aestus
13571306 1 3134 1827 +1307 0x850b00e0... BloXroute Max Profit
13569872 1 3134 1827 +1307 ether.fi 0x88857150... Ultra Sound
Total anomalies: 240

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})