Sat, Dec 27, 2025

Propagation anomalies - 2025-12-27

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-27' AND slot_start_date_time < '2025-12-27'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-27' AND slot_start_date_time < '2025-12-27'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-27' AND slot_start_date_time < '2025-12-27'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-27' AND slot_start_date_time < '2025-12-27'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-27' AND slot_start_date_time < '2025-12-27'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-27' AND slot_start_date_time < '2025-12-27'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-27' AND slot_start_date_time < '2025-12-27'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-27' AND slot_start_date_time < '2025-12-27'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,173
MEV blocks: 6,658 (92.8%)
Local blocks: 515 (7.2%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1758.5 + 21.13 × blob_count (R² = 0.014)
Residual σ = 627.1ms
Anomalies (>2σ slow): 269 (3.8%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13337764 0 7915 1758 +6157 Local View
13336080 12 6680 2012 +4668 EthGas View
13334400 0 5413 1758 +3655 Local View
13337576 5 4698 1864 +2834 Local View
13332192 0 4490 1758 +2732 Local View
13332363 0 4403 1758 +2645 Local View
13333024 0 4249 1758 +2491 Local View
13333184 0 4149 1758 +2391 Local View
13333942 5 4201 1864 +2337 EthGas View
13336864 0 4047 1758 +2289 Local View
13336500 0 3976 1758 +2218 Local View
13335893 0 3973 1758 +2215 Local View
13334720 0 3879 1758 +2121 Local View
13337344 0 3859 1758 +2101 Local View
13332488 0 3670 1758 +1912 Titan Relay View
13334313 0 3669 1758 +1911 Flashbots View
13336774 1 3648 1780 +1868 Flashbots View
13332884 0 3582 1758 +1824 Ultra Sound View
13334722 5 3685 1864 +1821 Ultra Sound View
13333123 0 3576 1758 +1818 BloXroute Regulated View
13336459 0 3572 1758 +1814 Flashbots View
13337887 1 3579 1780 +1799 Ultra Sound View
13333984 1 3579 1780 +1799 BloXroute Regulated View
13335824 2 3597 1801 +1796 Flashbots View
13331173 3 3610 1822 +1788 BloXroute Regulated View
13335817 0 3542 1758 +1784 Ultra Sound View
13336265 5 3636 1864 +1772 Ultra Sound View
13330841 0 3528 1758 +1770 BloXroute Max Profit View
13335785 0 3526 1758 +1768 Titan Relay View
13335407 1 3536 1780 +1756 BloXroute Regulated View
13337958 4 3598 1843 +1755 Flashbots View
13332497 3 3569 1822 +1747 Ultra Sound View
13333154 3 3568 1822 +1746 Ultra Sound View
13332312 3 3564 1822 +1742 Ultra Sound View
13336576 1 3514 1780 +1734 Flashbots View
13333735 0 3491 1758 +1733 Flashbots View
13336519 5 3595 1864 +1731 BloXroute Regulated View
13337906 3 3547 1822 +1725 Ultra Sound View
13334169 3 3542 1822 +1720 BloXroute Regulated View
13336018 9 3666 1949 +1717 Ultra Sound View
13337016 5 3578 1864 +1714 BloXroute Regulated View
13334292 7 3620 1906 +1714 Titan Relay View
13333150 4 3556 1843 +1713 BloXroute Regulated View
13337142 5 3565 1864 +1701 Ultra Sound View
13336510 8 3621 1927 +1694 Ultra Sound View
13333139 8 3612 1927 +1685 Ultra Sound View
13337074 0 3440 1758 +1682 Ultra Sound View
13333122 4 3523 1843 +1680 Aestus View
13335661 11 3669 1991 +1678 Titan Relay View
13335689 5 3539 1864 +1675 BloXroute Regulated View
13335646 5 3535 1864 +1671 Ultra Sound View
13331105 8 3596 1927 +1669 Ultra Sound View
13336317 10 3638 1970 +1668 Ultra Sound View
13335430 5 3524 1864 +1660 BloXroute Max Profit View
13337662 0 3390 1758 +1632 BloXroute Regulated View
13330834 6 3492 1885 +1607 Ultra Sound View
13337306 5 3470 1864 +1606 Ultra Sound View
13336411 1 3377 1780 +1597 Ultra Sound View
13337785 7 3500 1906 +1594 BloXroute Regulated View
13335831 7 3495 1906 +1589 Ultra Sound View
13332826 3 3392 1822 +1570 Ultra Sound View
13335052 14 3622 2054 +1568 Ultra Sound View
13332611 11 3558 1991 +1567 Titan Relay View
13332012 1 3342 1780 +1562 BloXroute Regulated View
13333664 1 3338 1780 +1558 BloXroute Max Profit View
13330880 0 3300 1758 +1542 Titan Relay View
13333974 6 3425 1885 +1540 Ultra Sound View
13332960 0 3298 1758 +1540 Titan Relay View
13333738 0 3296 1758 +1538 BloXroute Regulated View
13333060 0 3295 1758 +1537 BloXroute Regulated View
13331815 0 3292 1758 +1534 Titan Relay View
13335841 3 3351 1822 +1529 Titan Relay View
13336911 5 3391 1864 +1527 BloXroute Regulated View
13332517 4 3358 1843 +1515 Local View
13337398 0 3270 1758 +1512 BloXroute Regulated View
13335932 0 3269 1758 +1511 BloXroute Regulated View
13335733 5 3372 1864 +1508 BloXroute Regulated View
13335594 6 3380 1885 +1495 BloXroute Regulated View
13332704 0 3253 1758 +1495 Ultra Sound View
13333528 4 3334 1843 +1491 Titan Relay View
13335155 0 3246 1758 +1488 Ultra Sound View
13333190 0 3239 1758 +1481 BloXroute Regulated View
13331883 6 3364 1885 +1479 Titan Relay View
13331651 8 3406 1927 +1479 BloXroute Regulated View
13335426 3 3298 1822 +1476 Ultra Sound View
13334303 5 3340 1864 +1476 Titan Relay View
13335386 0 3234 1758 +1476 Ultra Sound View
13333412 1 3255 1780 +1475 Titan Relay View
13332406 3 3297 1822 +1475 BloXroute Regulated View
13334635 0 3230 1758 +1472 Ultra Sound View
13335781 1 3245 1780 +1465 Ultra Sound View
13336944 0 3218 1758 +1460 Ultra Sound View
13335169 5 3322 1864 +1458 Agnostic Gnosis View
13337617 5 3322 1864 +1458 Titan Relay View
13331044 0 3214 1758 +1456 Titan Relay View
13331178 5 3316 1864 +1452 Titan Relay View
13337451 0 3209 1758 +1451 Ultra Sound View
13335978 6 3333 1885 +1448 Titan Relay View
13332444 3 3268 1822 +1446 Flashbots View
13334030 10 3413 1970 +1443 BloXroute Regulated View
13337195 8 3366 1927 +1439 Titan Relay View
13331447 1 3215 1780 +1435 BloXroute Regulated View
13331801 9 3382 1949 +1433 BloXroute Regulated View
13335231 7 3335 1906 +1429 Titan Relay View
13336759 3 3248 1822 +1426 Ultra Sound View
13335314 5 3289 1864 +1425 Ultra Sound View
13334930 3 3246 1822 +1424 Ultra Sound View
13334788 0 3181 1758 +1423 Ultra Sound View
13334432 4 3265 1843 +1422 Titan Relay View
13331369 5 3286 1864 +1422 Ultra Sound View
13337010 0 3179 1758 +1421 Ultra Sound View
13335588 8 3346 1927 +1419 BloXroute Max Profit View
13331351 9 3367 1949 +1418 Ultra Sound View
13333820 5 3282 1864 +1418 BloXroute Regulated View
13330892 1 3193 1780 +1413 BloXroute Regulated View
13336170 5 3274 1864 +1410 BloXroute Regulated View
13331721 7 3316 1906 +1410 Ultra Sound View
13331422 0 3168 1758 +1410 Ultra Sound View
13334848 15 3479 2075 +1404 Ultra Sound View
13331008 7 3309 1906 +1403 BloXroute Max Profit View
13336729 5 3266 1864 +1402 Ultra Sound View
13334314 8 3329 1927 +1402 BloXroute Regulated View
13335355 0 3153 1758 +1395 Ultra Sound View
13334993 6 3279 1885 +1394 Ultra Sound View
13331226 8 3321 1927 +1394 BloXroute Regulated View
13330870 5 3257 1864 +1393 BloXroute Max Profit View
13334841 1 3171 1780 +1391 BloXroute Regulated View
13332033 15 3465 2075 +1390 Ultra Sound View
13333002 6 3273 1885 +1388 Ultra Sound View
13337360 11 3377 1991 +1386 BloXroute Regulated View
13333233 5 3243 1864 +1379 Ultra Sound View
13336868 1 3158 1780 +1378 Aestus View
13333752 7 3283 1906 +1377 Titan Relay View
13337298 0 3134 1758 +1376 BloXroute Regulated View
13333608 8 3303 1927 +1376 Titan Relay View
13332792 0 3133 1758 +1375 BloXroute Regulated View
13337315 0 3130 1758 +1372 Ultra Sound View
13333784 8 3299 1927 +1372 BloXroute Regulated View
13335683 0 3127 1758 +1369 BloXroute Max Profit View
13332550 0 3126 1758 +1368 Aestus View
13336798 5 3230 1864 +1366 BloXroute Regulated View
13337057 5 3228 1864 +1364 Ultra Sound View
13334844 5 3228 1864 +1364 BloXroute Regulated View
13332230 5 3227 1864 +1363 Aestus View
13334652 0 3120 1758 +1362 BloXroute Regulated View
13333420 1 3140 1780 +1360 Flashbots View
13332718 1 3140 1780 +1360 BloXroute Regulated View
13332237 9 3309 1949 +1360 BloXroute Regulated View
13331720 3 3181 1822 +1359 Ultra Sound View
13335084 3 3180 1822 +1358 Ultra Sound View
13331733 5 3221 1864 +1357 Aestus View
13332634 0 3115 1758 +1357 Flashbots View
13337364 0 3115 1758 +1357 Flashbots View
13336065 6 3241 1885 +1356 BloXroute Regulated View
13332539 0 3114 1758 +1356 Ultra Sound View
13334394 8 3283 1927 +1356 Ultra Sound View
13335270 0 3113 1758 +1355 BloXroute Max Profit View
13331592 6 3239 1885 +1354 BloXroute Regulated View
13332759 1 3133 1780 +1353 BloXroute Regulated View
13335663 1 3132 1780 +1352 Aestus View
13336777 5 3216 1864 +1352 Flashbots View
13333044 0 3108 1758 +1350 Agnostic Gnosis View
13335408 6 3234 1885 +1349 Ultra Sound View
13334583 7 3255 1906 +1349 EthGas View
13336464 7 3255 1906 +1349 Flashbots View
13336624 10 3318 1970 +1348 Ultra Sound View
13335244 1 3124 1780 +1344 EthGas View
13331975 5 3208 1864 +1344 BloXroute Regulated View
13335108 0 3102 1758 +1344 BloXroute Regulated View
13330891 5 3207 1864 +1343 Ultra Sound View
13337232 4 3184 1843 +1341 Flashbots View
13331410 9 3289 1949 +1340 EthGas View
13334368 11 3331 1991 +1340 Ultra Sound View
13337558 4 3183 1843 +1340 Agnostic Gnosis View
13333552 1 3118 1780 +1338 Titan Relay View
13332618 6 3223 1885 +1338 Ultra Sound View
13333915 0 3095 1758 +1337 Flashbots View
13335708 2 3137 1801 +1336 Ultra Sound View
13332514 4 3178 1843 +1335 BloXroute Regulated View
13337242 8 3262 1927 +1335 Ultra Sound View
13331690 8 3262 1927 +1335 Ultra Sound View
13334331 8 3261 1927 +1334 Ultra Sound View
13334217 12 3344 2012 +1332 Titan Relay View
13335070 3 3153 1822 +1331 Ultra Sound View
13336626 1 3110 1780 +1330 Flashbots View
13332369 2 3131 1801 +1330 Ultra Sound View
13331631 2 3131 1801 +1330 Aestus View
13334941 0 3088 1758 +1330 Aestus View
13331128 0 3087 1758 +1329 BloXroute Max Profit View
13335971 2 3129 1801 +1328 Ultra Sound View
13331652 3 3150 1822 +1328 Agnostic Gnosis View
13332001 0 3086 1758 +1328 Ultra Sound View
13336948 3 3149 1822 +1327 Ultra Sound View
13333385 0 3084 1758 +1326 Flashbots View
13332274 3 3147 1822 +1325 Ultra Sound View
13333119 5 3188 1864 +1324 Ultra Sound View
13335282 0 3082 1758 +1324 Ultra Sound View
13334452 1 3103 1780 +1323 Titan Relay View
13336038 0 3081 1758 +1323 Flashbots View
13336177 0 3081 1758 +1323 BloXroute Max Profit View
13336016 0 3080 1758 +1322 Aestus View
13332263 0 3079 1758 +1321 BloXroute Max Profit View
13331599 1 3099 1780 +1319 Agnostic Gnosis View
13333372 0 3077 1758 +1319 Agnostic Gnosis View
13335745 3 3140 1822 +1318 Ultra Sound View
13337591 0 3076 1758 +1318 Flashbots View
13335096 0 3076 1758 +1318 Ultra Sound View
13336629 8 3245 1927 +1318 BloXroute Max Profit View
13334849 0 3074 1758 +1316 BloXroute Max Profit View
13336399 3 3137 1822 +1315 BloXroute Max Profit View
13333756 3 3136 1822 +1314 Flashbots View
13332134 3 3133 1822 +1311 Ultra Sound View
13336303 1 3090 1780 +1310 Ultra Sound View
13337604 9 3259 1949 +1310 Ultra Sound View
13334334 0 3068 1758 +1310 BloXroute Max Profit View
13335482 5 3173 1864 +1309 BloXroute Max Profit View
13335142 5 3171 1864 +1307 BloXroute Max Profit View
13333216 5 3171 1864 +1307 EthGas View
13334411 5 3171 1864 +1307 Ultra Sound View
13334026 14 3361 2054 +1307 Titan Relay View
13332924 0 3064 1758 +1306 Titan Relay View
13333901 2 3106 1801 +1305 BloXroute Max Profit View
13333931 11 3296 1991 +1305 BloXroute Max Profit View
13332438 5 3167 1864 +1303 BloXroute Max Profit View
13331077 7 3208 1906 +1302 Flashbots View
13336057 0 3060 1758 +1302 BloXroute Max Profit View
13331109 4 3144 1843 +1301 BloXroute Regulated View
13330894 1 3080 1780 +1300 Ultra Sound View
13335064 10 3270 1970 +1300 BloXroute Max Profit View
13336749 1 3079 1780 +1299 Ultra Sound View
13336735 14 3353 2054 +1299 Ultra Sound View
13333949 9 3245 1949 +1296 BloXroute Max Profit View
13333642 0 3052 1758 +1294 Ultra Sound View
13334158 10 3263 1970 +1293 BloXroute Max Profit View
13336394 0 3051 1758 +1293 BloXroute Max Profit View
13335453 14 3346 2054 +1292 BloXroute Max Profit View
13331348 8 3219 1927 +1292 BloXroute Max Profit View
13335276 9 3239 1949 +1290 BloXroute Max Profit View
13337769 2 3091 1801 +1290 Agnostic Gnosis View
13335157 0 3048 1758 +1290 BloXroute Max Profit View
13333531 0 3046 1758 +1288 BloXroute Regulated View
13331182 0 3043 1758 +1285 Titan Relay View
13331238 0 3041 1758 +1283 Ultra Sound View
13337027 0 3041 1758 +1283 Titan Relay View
13337984 8 3209 1927 +1282 Flashbots View
13337397 1 3059 1780 +1279 Agnostic Gnosis View
13336816 1 3058 1780 +1278 BloXroute Regulated View
13336019 3 3098 1822 +1276 Ultra Sound View
13331069 0 3034 1758 +1276 Flashbots View
13336848 1 3055 1780 +1275 BloXroute Max Profit View
13337110 1 3054 1780 +1274 Ultra Sound View
13337084 5 3138 1864 +1274 Flashbots View
13335639 6 3159 1885 +1274 Flashbots View
13332375 8 3200 1927 +1273 Aestus View
13333596 0 3030 1758 +1272 BloXroute Max Profit View
13336234 10 3239 1970 +1269 Ultra Sound View
13336344 2 3069 1801 +1268 BloXroute Max Profit View
13337820 2 3068 1801 +1267 Agnostic Gnosis View
13333539 10 3237 1970 +1267 BloXroute Regulated View
13337963 0 3025 1758 +1267 BloXroute Max Profit View
13331963 0 3023 1758 +1265 Ultra Sound View
13331714 1 3043 1780 +1263 Ultra Sound View
13335788 0 3021 1758 +1263 BloXroute Max Profit View
13337240 9 3211 1949 +1262 BloXroute Max Profit View
13330855 3 3083 1822 +1261 BloXroute Regulated View
13331691 1 3037 1780 +1257 Ultra Sound View
13337183 5 3121 1864 +1257 Ultra Sound View
13333318 1 3036 1780 +1256 Titan Relay View
13336898 3 3077 1822 +1255 Ultra Sound View
Total anomalies: 269

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})