Sun, Dec 28, 2025

Propagation anomalies - 2025-12-28

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-28' AND slot_start_date_time < '2025-12-28'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-28' AND slot_start_date_time < '2025-12-28'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-28' AND slot_start_date_time < '2025-12-28'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-28' AND slot_start_date_time < '2025-12-28'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-28' AND slot_start_date_time < '2025-12-28'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-28' AND slot_start_date_time < '2025-12-28'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-28' AND slot_start_date_time < '2025-12-28'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-28' AND slot_start_date_time < '2025-12-28'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,178
MEV blocks: 6,679 (93.0%)
Local blocks: 499 (7.0%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1767.3 + 17.78 × blob_count (R² = 0.011)
Residual σ = 615.9ms
Anomalies (>2σ slow): 281 (3.9%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13340911 0 6403 1767 +4636 Local View
13340856 0 6128 1767 +4361 Local View
13340564 0 4463 1767 +2696 Local View
13342954 9 4521 1927 +2594 Local View
13338357 0 4336 1767 +2569 Local View
13338192 0 4056 1767 +2289 Local View
13344523 0 3971 1767 +2204 Local View
13344992 0 3929 1767 +2162 Local View
13344160 7 4020 1892 +2128 Local View
13341560 2 3811 1803 +2008 Local View
13341002 3 3804 1821 +1983 Local View
13340288 1 3712 1785 +1927 Local View
13343662 3 3728 1821 +1907 BloXroute Max Profit View
13343974 6 3769 1874 +1895 Titan Relay View
13340706 0 3604 1767 +1837 BloXroute Regulated View
13341972 5 3690 1856 +1834 Titan Relay View
13338624 0 3600 1767 +1833 Ultra Sound View
13342226 4 3660 1838 +1822 Ultra Sound View
13344080 1 3600 1785 +1815 Titan Relay View
13340069 1 3597 1785 +1812 BloXroute Regulated View
13338094 9 3718 1927 +1791 Ultra Sound View
13340618 3 3595 1821 +1774 Ultra Sound View
13340711 8 3680 1910 +1770 BloXroute Regulated View
13344290 1 3553 1785 +1768 Flashbots View
13343087 1 3552 1785 +1767 Ultra Sound View
13344200 0 3529 1767 +1762 Local View
13338560 0 3527 1767 +1760 BloXroute Regulated View
13340182 0 3526 1767 +1759 BloXroute Regulated View
13341893 5 3614 1856 +1758 BloXroute Regulated View
13338517 3 3576 1821 +1755 Ultra Sound View
13338935 2 3555 1803 +1752 Ultra Sound View
13338191 1 3534 1785 +1749 Titan Relay View
13340083 3 3547 1821 +1726 Ultra Sound View
13341645 4 3559 1838 +1721 Titan Relay View
13341227 8 3628 1910 +1718 Titan Relay View
13339133 3 3539 1821 +1718 BloXroute Max Profit View
13343983 6 3591 1874 +1717 Ultra Sound View
13341060 9 3643 1927 +1716 BloXroute Regulated View
13342853 6 3585 1874 +1711 EthGas View
13339178 0 3469 1767 +1702 BloXroute Regulated View
13339215 0 3456 1767 +1689 Ultra Sound View
13339827 5 3526 1856 +1670 Titan Relay View
13343436 9 3586 1927 +1659 Titan Relay View
13343886 0 3416 1767 +1649 Ultra Sound View
13344366 5 3494 1856 +1638 Ultra Sound View
13344908 8 3542 1910 +1632 Titan Relay View
13341571 0 3386 1767 +1619 Titan Relay View
13340946 8 3526 1910 +1616 BloXroute Regulated View
13343254 9 3529 1927 +1602 Ultra Sound View
13338930 3 3417 1821 +1596 BloXroute Max Profit View
13340124 0 3359 1767 +1592 Ultra Sound View
13342496 7 3480 1892 +1588 Ultra Sound View
13344192 1 3373 1785 +1588 Aestus View
13338695 0 3346 1767 +1579 Titan Relay View
13343252 0 3346 1767 +1579 Titan Relay View
13340353 0 3345 1767 +1578 Ultra Sound View
13341984 2 3371 1803 +1568 Ultra Sound View
13340877 11 3509 1963 +1546 Ultra Sound View
13338801 6 3407 1874 +1533 Titan Relay View
13343083 5 3387 1856 +1531 Ultra Sound View
13338792 0 3296 1767 +1529 Ultra Sound View
13342405 0 3295 1767 +1528 Titan Relay View
13338085 0 3293 1767 +1526 Titan Relay View
13339212 0 3288 1767 +1521 BloXroute Regulated View
13342872 5 3375 1856 +1519 BloXroute Regulated View
13340837 6 3389 1874 +1515 Ultra Sound View
13343781 1 3299 1785 +1514 BloXroute Regulated View
13338473 8 3419 1910 +1509 Local View
13344201 1 3291 1785 +1506 Ultra Sound View
13342784 5 3359 1856 +1503 BloXroute Max Profit View
13338753 0 3270 1767 +1503 Titan Relay View
13339855 0 3270 1767 +1503 BloXroute Regulated View
13339382 1 3286 1785 +1501 BloXroute Regulated View
13338654 14 3517 2016 +1501 Ultra Sound View
13343748 3 3321 1821 +1500 BloXroute Regulated View
13345057 5 3356 1856 +1500 Titan Relay View
13342944 9 3423 1927 +1496 Ultra Sound View
13344847 13 3491 1998 +1493 BloXroute Regulated View
13342854 9 3419 1927 +1492 BloXroute Regulated View
13341841 1 3270 1785 +1485 BloXroute Regulated View
13340798 5 3340 1856 +1484 BloXroute Regulated View
13341617 1 3267 1785 +1482 BloXroute Regulated View
13339202 8 3391 1910 +1481 BloXroute Regulated View
13339237 4 3317 1838 +1479 BloXroute Regulated View
13343452 0 3243 1767 +1476 BloXroute Max Profit View
13342481 5 3329 1856 +1473 Ultra Sound View
13340420 5 3326 1856 +1470 BloXroute Regulated View
13343292 4 3308 1838 +1470 Ultra Sound View
13343568 5 3325 1856 +1469 BloXroute Regulated View
13344907 0 3236 1767 +1469 BloXroute Regulated View
13342228 0 3231 1767 +1464 Flashbots View
13341396 3 3281 1821 +1460 BloXroute Max Profit View
13339946 3 3280 1821 +1459 BloXroute Regulated View
13344031 5 3315 1856 +1459 Local View
13338185 3 3277 1821 +1456 BloXroute Regulated View
13339274 0 3220 1767 +1453 BloXroute Regulated View
13343360 0 3217 1767 +1450 BloXroute Max Profit View
13342808 8 3348 1910 +1438 Titan Relay View
13340285 7 3328 1892 +1436 Titan Relay View
13343747 5 3290 1856 +1434 EthGas View
13343845 11 3394 1963 +1431 EthGas View
13339430 8 3339 1910 +1429 BloXroute Regulated View
13338332 3 3250 1821 +1429 Flashbots View
13340514 9 3355 1927 +1428 BloXroute Regulated View
13342536 6 3293 1874 +1419 Titan Relay View
13341370 6 3289 1874 +1415 Ultra Sound View
13340563 3 3234 1821 +1413 BloXroute Max Profit View
13339087 4 3248 1838 +1410 BloXroute Regulated View
13342661 0 3174 1767 +1407 BloXroute Regulated View
13341830 0 3166 1767 +1399 EthGas View
13343464 5 3245 1856 +1389 Titan Relay View
13344164 10 3330 1945 +1385 Ultra Sound View
13342123 0 3151 1767 +1384 Ultra Sound View
13342036 0 3150 1767 +1383 Ultra Sound View
13342592 1 3166 1785 +1381 Ultra Sound View
13340174 6 3252 1874 +1378 Ultra Sound View
13343566 4 3216 1838 +1378 Agnostic Gnosis View
13338099 0 3143 1767 +1376 Flashbots View
13343088 5 3230 1856 +1374 Titan Relay View
13343680 14 3388 2016 +1372 Ultra Sound View
13343060 0 3135 1767 +1368 BloXroute Regulated View
13341509 1 3152 1785 +1367 Ultra Sound View
13341533 7 3258 1892 +1366 Aestus View
13342045 8 3274 1910 +1364 Ultra Sound View
13340922 9 3291 1927 +1364 Ultra Sound View
13338031 3 3181 1821 +1360 Ultra Sound View
13341100 5 3216 1856 +1360 Ultra Sound View
13338578 10 3301 1945 +1356 Ultra Sound View
13342706 8 3265 1910 +1355 BloXroute Max Profit View
13340304 8 3265 1910 +1355 Ultra Sound View
13343658 5 3211 1856 +1355 Ultra Sound View
13344812 10 3298 1945 +1353 Ultra Sound View
13342666 0 3120 1767 +1353 Ultra Sound View
13342550 5 3208 1856 +1352 Ultra Sound View
13341214 4 3190 1838 +1352 Ultra Sound View
13343260 6 3225 1874 +1351 Ultra Sound View
13345130 9 3278 1927 +1351 Ultra Sound View
13339732 0 3117 1767 +1350 Aestus View
13344272 1 3134 1785 +1349 Flashbots View
13342106 1 3132 1785 +1347 Agnostic Gnosis View
13338627 12 3326 1981 +1345 Ultra Sound View
13341630 3 3165 1821 +1344 Ultra Sound View
13343384 6 3218 1874 +1344 Ultra Sound View
13343130 0 3109 1767 +1342 BloXroute Max Profit View
13340680 0 3109 1767 +1342 Ultra Sound View
13344449 3 3159 1821 +1338 Flashbots View
13339590 0 3105 1767 +1338 BloXroute Max Profit View
13342349 8 3247 1910 +1337 Agnostic Gnosis View
13340683 0 3103 1767 +1336 Ultra Sound View
13338064 9 3263 1927 +1336 Local View
13341948 3 3156 1821 +1335 Agnostic Gnosis View
13343984 6 3209 1874 +1335 Ultra Sound View
13345131 0 3100 1767 +1333 BloXroute Regulated View
13341687 5 3185 1856 +1329 Ultra Sound View
13341134 0 3096 1767 +1329 Ultra Sound View
13341847 0 3095 1767 +1328 Ultra Sound View
13343255 2 3130 1803 +1327 Aestus View
13342442 1 3112 1785 +1327 BloXroute Max Profit View
13341523 0 3094 1767 +1327 BloXroute Max Profit View
13342403 1 3110 1785 +1325 BloXroute Regulated View
13342668 12 3304 1981 +1323 BloXroute Regulated View
13343369 0 3090 1767 +1323 BloXroute Max Profit View
13344628 0 3090 1767 +1323 Ultra Sound View
13344576 13 3321 1998 +1323 Ultra Sound View
13341963 1 3105 1785 +1320 Flashbots View
13344301 6 3193 1874 +1319 BloXroute Max Profit View
13338955 0 3086 1767 +1319 Flashbots View
13338252 0 3086 1767 +1319 Agnostic Gnosis View
13345102 9 3246 1927 +1319 Flashbots View
13344664 1 3102 1785 +1317 Aestus View
13343291 8 3225 1910 +1315 Titan Relay View
13340001 3 3135 1821 +1314 Aestus View
13344742 0 3080 1767 +1313 Ultra Sound View
13344335 0 3079 1767 +1312 BloXroute Max Profit View
13342507 0 3079 1767 +1312 BloXroute Max Profit View
13340125 1 3096 1785 +1311 Aestus View
13341251 3 3131 1821 +1310 BloXroute Max Profit View
13340455 0 3076 1767 +1309 Flashbots View
13339163 0 3075 1767 +1308 Ultra Sound View
13343090 8 3217 1910 +1307 BloXroute Max Profit View
13345103 0 3074 1767 +1307 BloXroute Regulated View
13341911 8 3216 1910 +1306 BloXroute Max Profit View
13344225 15 3339 2034 +1305 Ultra Sound View
13340013 8 3214 1910 +1304 Ultra Sound View
13345053 1 3088 1785 +1303 Aestus View
13340308 3 3123 1821 +1302 Aestus View
13338202 13 3298 1998 +1300 Local View
13338544 5 3155 1856 +1299 Ultra Sound View
13341304 2 3101 1803 +1298 BloXroute Max Profit View
13344300 1 3083 1785 +1298 BloXroute Max Profit View
13342886 2 3098 1803 +1295 BloXroute Max Profit View
13338467 8 3204 1910 +1294 Flashbots View
13338914 0 3060 1767 +1293 BloXroute Max Profit View
13340999 1 3077 1785 +1292 BloXroute Regulated View
13341833 1 3076 1785 +1291 EthGas View
13343352 0 3056 1767 +1289 Ultra Sound View
13344274 4 3127 1838 +1289 Titan Relay View
13341613 10 3233 1945 +1288 Ultra Sound View
13342089 1 3071 1785 +1286 Aestus View
13343354 0 3053 1767 +1286 BloXroute Max Profit View
13344355 6 3159 1874 +1285 Titan Relay View
13339024 0 3052 1767 +1285 Ultra Sound View
13340120 1 3066 1785 +1281 Ultra Sound View
13338644 5 3137 1856 +1281 Flashbots View
13344042 0 3048 1767 +1281 Ultra Sound View
13341163 8 3190 1910 +1280 Titan Relay View
13338249 6 3154 1874 +1280 BloXroute Regulated View
13342726 8 3189 1910 +1279 Ultra Sound View
13344956 3 3099 1821 +1278 BloXroute Max Profit View
13345133 1 3063 1785 +1278 Ultra Sound View
13344422 0 3045 1767 +1278 Agnostic Gnosis View
13340767 0 3044 1767 +1277 BloXroute Max Profit View
13339619 1 3060 1785 +1275 BloXroute Max Profit View
13342658 0 3041 1767 +1274 BloXroute Max Profit View
13344277 0 3040 1767 +1273 Flashbots View
13341053 7 3164 1892 +1272 BloXroute Regulated View
13342049 6 3146 1874 +1272 Ultra Sound View
13341191 3 3092 1821 +1271 Agnostic Gnosis View
13341411 1 3056 1785 +1271 BloXroute Max Profit View
13343995 10 3215 1945 +1270 Ultra Sound View
13342572 8 3178 1910 +1268 BloXroute Max Profit View
13341445 1 3052 1785 +1267 BloXroute Max Profit View
13343635 4 3105 1838 +1267 Agnostic Gnosis View
13343682 1 3051 1785 +1266 Flashbots View
13344110 5 3122 1856 +1266 BloXroute Max Profit View
13344861 0 3033 1767 +1266 Ultra Sound View
13338888 7 3157 1892 +1265 Ultra Sound View
13344504 1 3049 1785 +1264 Aestus View
13342652 5 3119 1856 +1263 BloXroute Max Profit View
13341266 0 3030 1767 +1263 BloXroute Max Profit View
13340436 8 3172 1910 +1262 BloXroute Regulated View
13339821 1 3047 1785 +1262 Titan Relay View
13340965 3 3082 1821 +1261 BloXroute Max Profit View
13344097 3 3081 1821 +1260 Aestus View
13340650 10 3205 1945 +1260 Ultra Sound View
13344676 5 3116 1856 +1260 BloXroute Max Profit View
13341193 9 3187 1927 +1260 BloXroute Regulated View
13339899 1 3043 1785 +1258 BloXroute Regulated View
13339088 0 3025 1767 +1258 BloXroute Max Profit View
13343128 4 3096 1838 +1258 Titan Relay View
13339866 3 3078 1821 +1257 Ultra Sound View
13342160 5 3113 1856 +1257 BloXroute Max Profit View
13341738 0 3024 1767 +1257 BloXroute Regulated View
13340246 1 3041 1785 +1256 Ultra Sound View
13338997 0 3023 1767 +1256 BloXroute Regulated View
13342139 3 3076 1821 +1255 Titan Relay View
13344275 3 3074 1821 +1253 Flashbots View
13339926 3 3073 1821 +1252 Ultra Sound View
13338076 2 3055 1803 +1252 Ultra Sound View
13339139 0 3019 1767 +1252 Ultra Sound View
13340526 3 3072 1821 +1251 BloXroute Max Profit View
13343010 3 3070 1821 +1249 BloXroute Max Profit View
13344172 0 3016 1767 +1249 Ultra Sound View
13342406 0 3015 1767 +1248 Ultra Sound View
13344787 0 3015 1767 +1248 BloXroute Max Profit View
13340437 0 3014 1767 +1247 BloXroute Max Profit View
13342921 5 3102 1856 +1246 BloXroute Regulated View
13343729 11 3208 1963 +1245 Ultra Sound View
13343708 0 3012 1767 +1245 Titan Relay View
13340638 3 3064 1821 +1243 Ultra Sound View
13342372 6 3117 1874 +1243 BloXroute Max Profit View
13340212 3 3063 1821 +1242 Ultra Sound View
13341340 3 3061 1821 +1240 Titan Relay View
13343804 3 3061 1821 +1240 Ultra Sound View
13340653 0 3007 1767 +1240 Ultra Sound View
13339471 0 3007 1767 +1240 BloXroute Regulated View
13338904 2 3042 1803 +1239 Ultra Sound View
13338387 1 3024 1785 +1239 Ultra Sound View
13339037 5 3095 1856 +1239 BloXroute Max Profit View
13341116 8 3148 1910 +1238 BloXroute Max Profit View
13339551 9 3165 1927 +1238 Ultra Sound View
13340906 10 3182 1945 +1237 BloXroute Max Profit View
13338396 7 3128 1892 +1236 BloXroute Max Profit View
13339327 5 3091 1856 +1235 Ultra Sound View
13342308 0 3001 1767 +1234 Aestus View
13341823 0 3001 1767 +1234 BloXroute Max Profit View
13341812 4 3072 1838 +1234 BloXroute Max Profit View
13338755 0 3000 1767 +1233 BloXroute Max Profit View
13343159 4 3071 1838 +1233 Flashbots View
13338810 11 3195 1963 +1232 BloXroute Max Profit View
13341397 5 3088 1856 +1232 BloXroute Max Profit View
Total anomalies: 281

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})