Mon, Dec 29, 2025

Propagation anomalies - 2025-12-29

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-29' AND slot_start_date_time < '2025-12-29'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,175
MEV blocks: 6,664 (92.9%)
Local blocks: 511 (7.1%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1787.0 + 15.86 × blob_count (R² = 0.010)
Residual σ = 624.3ms
Anomalies (>2σ slow): 256 (3.6%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13350528 0 6580 1787 +4793 Local View
13352063 0 6534 1787 +4747 Local View
13352296 0 6420 1787 +4633 Local View
13352004 3 6366 1835 +4531 Local View
13352005 0 6247 1787 +4460 Local View
13349920 0 5261 1787 +3474 Local View
13348868 15 5277 2025 +3252 Flashbots View
13345235 0 4832 1787 +3045 Local View
13347594 9 4777 1930 +2847 Local View
13352191 5 4660 1866 +2794 Local View
13352000 0 4275 1787 +2488 Local View
13350178 0 4198 1787 +2411 Local View
13346480 0 4069 1787 +2282 Local View
13349259 5 4054 1866 +2188 Local View
13350096 0 3971 1787 +2184 Local View
13349536 0 3965 1787 +2178 Local View
13345318 0 3952 1787 +2165 Local View
13348507 0 3861 1787 +2074 Local View
13348268 10 3965 1946 +2019 EthGas View
13345568 0 3769 1787 +1982 Local View
13351072 1 3783 1803 +1980 Local View
13352384 14 3961 2009 +1952 Ultra Sound View
13349593 0 3706 1787 +1919 Local View
13351912 3 3713 1835 +1878 Titan Relay View
13346981 0 3662 1787 +1875 Ultra Sound View
13348390 5 3741 1866 +1875 Ultra Sound View
13352146 1 3669 1803 +1866 Titan Relay View
13350432 7 3740 1898 +1842 BloXroute Max Profit View
13351730 0 3627 1787 +1840 Ultra Sound View
13345668 0 3627 1787 +1840 Local View
13346704 5 3701 1866 +1835 Flashbots View
13347890 0 3593 1787 +1806 Ultra Sound View
13350591 10 3722 1946 +1776 Ultra Sound View
13350938 3 3589 1835 +1754 Titan Relay View
13350819 6 3636 1882 +1754 BloXroute Regulated View
13350862 3 3581 1835 +1746 Flashbots View
13345952 9 3675 1930 +1745 BloXroute Regulated View
13346465 6 3624 1882 +1742 BloXroute Regulated View
13348321 1 3532 1803 +1729 Aestus View
13345455 8 3642 1914 +1728 BloXroute Max Profit View
13351075 8 3636 1914 +1722 Ultra Sound View
13347127 6 3588 1882 +1706 Titan Relay View
13351375 3 3540 1835 +1705 Titan Relay View
13351092 0 3492 1787 +1705 Ultra Sound View
13351845 10 3643 1946 +1697 BloXroute Regulated View
13347907 5 3541 1866 +1675 Titan Relay View
13351786 13 3665 1993 +1672 Flashbots View
13348297 10 3615 1946 +1669 Titan Relay View
13350405 1 3469 1803 +1666 Ultra Sound View
13350946 0 3452 1787 +1665 Ultra Sound View
13348485 15 3689 2025 +1664 Ultra Sound View
13346429 0 3444 1787 +1657 Ultra Sound View
13346427 7 3555 1898 +1657 Ultra Sound View
13350976 3 3484 1835 +1649 Ultra Sound View
13351324 5 3509 1866 +1643 Ultra Sound View
13349604 6 3514 1882 +1632 Ultra Sound View
13352046 8 3534 1914 +1620 Ultra Sound View
13346539 10 3565 1946 +1619 Ultra Sound View
13349611 0 3382 1787 +1595 Titan Relay View
13351488 0 3381 1787 +1594 Titan Relay View
13345622 5 3454 1866 +1588 Ultra Sound View
13345653 8 3477 1914 +1563 Ultra Sound View
13350176 5 3415 1866 +1549 Ultra Sound View
13345480 8 3462 1914 +1548 BloXroute Regulated View
13346954 1 3341 1803 +1538 Titan Relay View
13350515 5 3402 1866 +1536 BloXroute Regulated View
13345295 0 3319 1787 +1532 Ultra Sound View
13351738 5 3396 1866 +1530 Ultra Sound View
13348564 2 3347 1819 +1528 Titan Relay View
13351129 3 3362 1835 +1527 Ultra Sound View
13345611 7 3424 1898 +1526 Ultra Sound View
13352270 8 3438 1914 +1524 BloXroute Regulated View
13350806 5 3389 1866 +1523 BloXroute Regulated View
13352353 2 3341 1819 +1522 BloXroute Regulated View
13347107 1 3325 1803 +1522 Titan Relay View
13351840 0 3306 1787 +1519 Ultra Sound View
13351472 6 3398 1882 +1516 BloXroute Max Profit View
13345686 0 3302 1787 +1515 Titan Relay View
13349983 11 3475 1961 +1514 Ultra Sound View
13347134 3 3347 1835 +1512 Titan Relay View
13345670 3 3347 1835 +1512 Titan Relay View
13346259 6 3390 1882 +1508 Local View
13349946 0 3290 1787 +1503 BloXroute Regulated View
13352272 3 3335 1835 +1500 Titan Relay View
13347206 3 3334 1835 +1499 Titan Relay View
13347179 4 3348 1850 +1498 BloXroute Regulated View
13350107 8 3411 1914 +1497 Ultra Sound View
13348382 5 3351 1866 +1485 Titan Relay View
13345975 0 3271 1787 +1484 Agnostic Gnosis View
13351918 6 3365 1882 +1483 Titan Relay View
13347283 0 3269 1787 +1482 BloXroute Regulated View
13352139 6 3361 1882 +1479 Titan Relay View
13347577 3 3311 1835 +1476 Titan Relay View
13349622 0 3263 1787 +1476 BloXroute Regulated View
13352280 3 3310 1835 +1475 BloXroute Regulated View
13349008 3 3307 1835 +1472 Titan Relay View
13350753 1 3275 1803 +1472 BloXroute Regulated View
13345590 3 3306 1835 +1471 BloXroute Regulated View
13348381 8 3380 1914 +1466 Agnostic Gnosis View
13345464 1 3265 1803 +1462 BloXroute Regulated View
13351983 7 3355 1898 +1457 Titan Relay View
13348112 0 3240 1787 +1453 Ultra Sound View
13346849 1 3253 1803 +1450 BloXroute Regulated View
13350000 0 3235 1787 +1448 BloXroute Regulated View
13351973 2 3266 1819 +1447 Titan Relay View
13348101 2 3266 1819 +1447 BloXroute Max Profit View
13351870 5 3313 1866 +1447 BloXroute Regulated View
13351709 4 3297 1850 +1447 BloXroute Regulated View
13349134 0 3233 1787 +1446 BloXroute Regulated View
13347912 0 3226 1787 +1439 Agnostic Gnosis View
13347105 1 3237 1803 +1434 Ultra Sound View
13348097 3 3265 1835 +1430 Ultra Sound View
13350227 0 3217 1787 +1430 Agnostic Gnosis View
13348142 4 3279 1850 +1429 Titan Relay View
13349307 5 3292 1866 +1426 Agnostic Gnosis View
13348720 2 3244 1819 +1425 Ultra Sound View
13350220 1 3228 1803 +1425 Titan Relay View
13352173 1 3228 1803 +1425 Flashbots View
13348722 2 3243 1819 +1424 Titan Relay View
13351353 7 3321 1898 +1423 Titan Relay View
13347714 5 3288 1866 +1422 BloXroute Max Profit View
13350160 4 3271 1850 +1421 BloXroute Regulated View
13349797 8 3334 1914 +1420 Titan Relay View
13345661 0 3206 1787 +1419 Flashbots View
13345906 4 3269 1850 +1419 BloXroute Regulated View
13351588 8 3332 1914 +1418 BloXroute Regulated View
13347790 6 3300 1882 +1418 Ultra Sound View
13350353 5 3281 1866 +1415 BloXroute Regulated View
13345680 0 3200 1787 +1413 Titan Relay View
13350953 0 3199 1787 +1412 Ultra Sound View
13346949 12 3389 1977 +1412 BloXroute Regulated View
13346324 0 3197 1787 +1410 Aestus View
13350249 6 3287 1882 +1405 BloXroute Regulated View
13351833 8 3318 1914 +1404 Titan Relay View
13346679 6 3285 1882 +1403 BloXroute Regulated View
13349129 4 3253 1850 +1403 BloXroute Regulated View
13352273 5 3268 1866 +1402 Flashbots View
13350011 6 3282 1882 +1400 Ultra Sound View
13346329 10 3343 1946 +1397 BloXroute Max Profit View
13352335 6 3279 1882 +1397 Ultra Sound View
13351124 5 3260 1866 +1394 Agnostic Gnosis View
13348817 4 3243 1850 +1393 BloXroute Regulated View
13352258 0 3176 1787 +1389 Titan Relay View
13349252 7 3280 1898 +1382 Titan Relay View
13347696 0 3167 1787 +1380 BloXroute Regulated View
13351632 7 3276 1898 +1378 EthGas View
13350880 5 3243 1866 +1377 BloXroute Max Profit View
13347942 8 3288 1914 +1374 BloXroute Max Profit View
13346594 4 3224 1850 +1374 Ultra Sound View
13347006 5 3235 1866 +1369 Ultra Sound View
13349724 8 3280 1914 +1366 Ultra Sound View
13345682 0 3153 1787 +1366 BloXroute Regulated View
13345574 0 3153 1787 +1366 BloXroute Max Profit View
13351904 11 3327 1961 +1366 Ultra Sound View
13348027 0 3151 1787 +1364 Ultra Sound View
13351368 0 3150 1787 +1363 BloXroute Regulated View
13350362 0 3146 1787 +1359 Flashbots View
13347814 5 3225 1866 +1359 Agnostic Gnosis View
13350631 10 3302 1946 +1356 BloXroute Max Profit View
13346493 9 3283 1930 +1353 Ultra Sound View
13349935 5 3219 1866 +1353 Ultra Sound View
13346936 1 3153 1803 +1350 Ultra Sound View
13347538 5 3214 1866 +1348 Local View
13348595 3 3182 1835 +1347 Ultra Sound View
13346069 6 3229 1882 +1347 Ultra Sound View
13352249 8 3260 1914 +1346 Ultra Sound View
13346339 6 3228 1882 +1346 Ultra Sound View
13347723 1 3148 1803 +1345 BloXroute Regulated View
13352086 0 3132 1787 +1345 Ultra Sound View
13350885 7 3243 1898 +1345 BloXroute Max Profit View
13345873 5 3208 1866 +1342 Aestus View
13346392 9 3271 1930 +1341 BloXroute Max Profit View
13350992 8 3255 1914 +1341 Ultra Sound View
13350244 5 3206 1866 +1340 BloXroute Max Profit View
13352016 10 3278 1946 +1332 BloXroute Max Profit View
13345231 0 3119 1787 +1332 BloXroute Regulated View
13349545 5 3197 1866 +1331 Aestus View
13351850 5 3195 1866 +1329 BloXroute Max Profit View
13351444 11 3290 1961 +1329 Ultra Sound View
13345939 3 3163 1835 +1328 Ultra Sound View
13349155 3 3163 1835 +1328 Aestus View
13350561 2 3147 1819 +1328 Ultra Sound View
13346348 0 3115 1787 +1328 Ultra Sound View
13350598 9 3256 1930 +1326 BloXroute Max Profit View
13345913 5 3190 1866 +1324 Ultra Sound View
13346497 1 3126 1803 +1323 Ultra Sound View
13348501 13 3315 1993 +1322 Ultra Sound View
13351882 0 3108 1787 +1321 BloXroute Max Profit View
13351834 3 3155 1835 +1320 Ultra Sound View
13349331 4 3170 1850 +1320 Ultra Sound View
13345685 0 3106 1787 +1319 Aestus View
13350171 6 3201 1882 +1319 Ultra Sound View
13350530 0 3105 1787 +1318 Flashbots View
13351968 0 3104 1787 +1317 Ultra Sound View
13349549 14 3326 2009 +1317 Local View
13350857 15 3341 2025 +1316 BloXroute Regulated View
13347509 1 3118 1803 +1315 Aestus View
13347268 5 3180 1866 +1314 Ultra Sound View
13345988 5 3180 1866 +1314 Ultra Sound View
13352242 5 3176 1866 +1310 Ultra Sound View
13348976 5 3176 1866 +1310 BloXroute Max Profit View
13347220 1 3112 1803 +1309 BloXroute Regulated View
13350505 3 3143 1835 +1308 Titan Relay View
13346281 13 3301 1993 +1308 Ultra Sound View
13350129 8 3218 1914 +1304 Agnostic Gnosis View
13349477 8 3215 1914 +1301 Ultra Sound View
13348270 0 3086 1787 +1299 BloXroute Max Profit View
13351613 9 3228 1930 +1298 BloXroute Max Profit View
13352214 5 3164 1866 +1298 Ultra Sound View
13346511 14 3306 2009 +1297 Ultra Sound View
13346299 0 3083 1787 +1296 Aestus View
13347230 2 3113 1819 +1294 Ultra Sound View
13347341 8 3206 1914 +1292 BloXroute Regulated View
13351076 3 3126 1835 +1291 BloXroute Max Profit View
13345252 8 3205 1914 +1291 BloXroute Max Profit View
13345693 0 3078 1787 +1291 BloXroute Max Profit View
13347155 13 3283 1993 +1290 Local View
13351244 3 3122 1835 +1287 Ultra Sound View
13350333 6 3168 1882 +1286 Agnostic Gnosis View
13346477 7 3183 1898 +1285 BloXroute Regulated View
13350710 5 3151 1866 +1285 BloXroute Max Profit View
13349848 1 3087 1803 +1284 Titan Relay View
13348324 1 3087 1803 +1284 BloXroute Max Profit View
13352115 0 3070 1787 +1283 Ultra Sound View
13349308 6 3163 1882 +1281 BloXroute Max Profit View
13345335 5 3147 1866 +1281 Agnostic Gnosis View
13348108 14 3288 2009 +1279 BloXroute Regulated View
13349580 6 3161 1882 +1279 BloXroute Max Profit View
13350210 6 3160 1882 +1278 BloXroute Regulated View
13347558 12 3254 1977 +1277 BloXroute Regulated View
13350622 3 3111 1835 +1276 Flashbots View
13347266 3 3111 1835 +1276 Flashbots View
13347549 1 3078 1803 +1275 Ultra Sound View
13351408 8 3189 1914 +1275 Ultra Sound View
13351422 6 3157 1882 +1275 BloXroute Max Profit View
13351360 5 3140 1866 +1274 Ultra Sound View
13348770 6 3155 1882 +1273 BloXroute Regulated View
13348446 3 3107 1835 +1272 Flashbots View
13348726 3 3104 1835 +1269 BloXroute Regulated View
13345387 6 3151 1882 +1269 BloXroute Max Profit View
13351419 4 3119 1850 +1269 BloXroute Max Profit View
13346006 6 3150 1882 +1268 Local View
13350889 4 3116 1850 +1266 Flashbots View
13345404 0 3051 1787 +1264 Ultra Sound View
13347595 0 3050 1787 +1263 Ultra Sound View
13348096 7 3160 1898 +1262 BloXroute Max Profit View
13346321 11 3221 1961 +1260 Ultra Sound View
13346814 3 3093 1835 +1258 BloXroute Max Profit View
13351008 10 3204 1946 +1258 Titan Relay View
13350844 1 3061 1803 +1258 Ultra Sound View
13348110 13 3249 1993 +1256 BloXroute Max Profit View
13346549 0 3042 1787 +1255 Local View
13348277 11 3214 1961 +1253 Ultra Sound View
13347884 0 3039 1787 +1252 Titan Relay View
13348920 1 3052 1803 +1249 Ultra Sound View
13351134 0 3036 1787 +1249 Aestus View
Total anomalies: 256

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})