Tue, Dec 30, 2025

Propagation anomalies - 2025-12-30

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-30' AND slot_start_date_time < '2025-12-30'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-30' AND slot_start_date_time < '2025-12-30'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-30' AND slot_start_date_time < '2025-12-30'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-30' AND slot_start_date_time < '2025-12-30'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-30' AND slot_start_date_time < '2025-12-30'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-30' AND slot_start_date_time < '2025-12-30'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-30' AND slot_start_date_time < '2025-12-30'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-30' AND slot_start_date_time < '2025-12-30'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,174
MEV blocks: 6,627 (92.4%)
Local blocks: 547 (7.6%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1791.1 + 15.80 × blob_count (R² = 0.008)
Residual σ = 682.9ms
Anomalies (>2σ slow): 179 (2.5%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13354229 0 9463 1791 +7672 Local View
13352406 8 6665 1918 +4747 Local View
13355578 0 6511 1791 +4720 Local View
13353214 0 6508 1791 +4717 Local View
13355058 0 6459 1791 +4668 Local View
13352887 0 6456 1791 +4665 Local View
13355290 0 6455 1791 +4664 Local View
13355732 0 6454 1791 +4663 Local View
13353714 0 6442 1791 +4651 Local View
13355770 0 6433 1791 +4642 Local View
13355426 0 6433 1791 +4642 Local View
13353962 0 6431 1791 +4640 Local View
13354613 0 6410 1791 +4619 Local View
13354572 0 6407 1791 +4616 Local View
13355369 0 6396 1791 +4605 Local View
13354497 0 6392 1791 +4601 Local View
13353846 5 6457 1870 +4587 Local View
13353493 7 6475 1902 +4573 Local View
13352801 0 6360 1791 +4569 Local View
13354991 7 6441 1902 +4539 Local View
13353221 0 6281 1791 +4490 Local View
13354318 10 6432 1949 +4483 Local View
13352418 6 6293 1886 +4407 Local View
13358976 0 5629 1791 +3838 Local View
13357056 8 5398 1918 +3480 Local View
13356192 0 5266 1791 +3475 Local View
13354272 0 5131 1791 +3340 Local View
13357057 0 5001 1791 +3210 Local View
13358496 0 4878 1791 +3087 Local View
13357728 0 4561 1791 +2770 Local View
13356864 13 4471 1996 +2475 Local View
13356923 0 4236 1791 +2445 Local View
13358320 0 4055 1791 +2264 Local View
13358336 0 4048 1791 +2257 Local View
13356031 9 4083 1933 +2150 BloXroute Max Profit View
13355104 0 3813 1791 +2022 Local View
13355459 0 3771 1791 +1980 Local View
13356310 1 3782 1807 +1975 Ultra Sound View
13358145 2 3656 1823 +1833 BloXroute Max Profit View
13352579 3 3671 1839 +1832 Ultra Sound View
13358054 3 3666 1839 +1827 BloXroute Regulated View
13358610 1 3634 1807 +1827 BloXroute Regulated View
13355592 3 3646 1839 +1807 BloXroute Max Profit View
13357662 2 3627 1823 +1804 Ultra Sound View
13354802 6 3690 1886 +1804 Agnostic Gnosis View
13354657 1 3607 1807 +1800 BloXroute Regulated View
13354325 1 3607 1807 +1800 Flashbots View
13355353 2 3622 1823 +1799 Titan Relay View
13354361 6 3685 1886 +1799 BloXroute Max Profit View
13356323 2 3619 1823 +1796 BloXroute Regulated View
13358609 0 3584 1791 +1793 Ultra Sound View
13355838 0 3577 1791 +1786 Flashbots View
13354933 8 3696 1918 +1778 EthGas View
13353312 5 3641 1870 +1771 Local View
13353369 2 3591 1823 +1768 Ultra Sound View
13355686 9 3699 1933 +1766 BloXroute Regulated View
13357476 5 3634 1870 +1764 Ultra Sound View
13355257 1 3569 1807 +1762 Ultra Sound View
13356515 5 3630 1870 +1760 Ultra Sound View
13354626 0 3547 1791 +1756 BloXroute Regulated View
13356581 5 3622 1870 +1752 BloXroute Regulated View
13358620 6 3628 1886 +1742 EthGas View
13359468 6 3628 1886 +1742 Titan Relay View
13352666 1 3546 1807 +1739 Ultra Sound View
13352778 5 3599 1870 +1729 Ultra Sound View
13356981 8 3646 1918 +1728 Ultra Sound View
13355696 5 3595 1870 +1725 Ultra Sound View
13359521 0 3498 1791 +1707 Titan Relay View
13352694 5 3571 1870 +1701 Titan Relay View
13355719 0 3492 1791 +1701 Local View
13357585 5 3556 1870 +1686 Ultra Sound View
13356329 0 3473 1791 +1682 Local View
13354964 12 3661 1981 +1680 Ultra Sound View
13356351 9 3612 1933 +1679 BloXroute Regulated View
13356202 7 3574 1902 +1672 Ultra Sound View
13353189 6 3541 1886 +1655 Titan Relay View
13357777 7 3554 1902 +1652 BloXroute Regulated View
13355333 11 3605 1965 +1640 Ultra Sound View
13356028 5 3508 1870 +1638 Ultra Sound View
13355893 8 3552 1918 +1634 Titan Relay View
13356924 3 3467 1839 +1628 Local View
13358322 4 3471 1854 +1617 Ultra Sound View
13353582 0 3399 1791 +1608 Ultra Sound View
13353367 11 3564 1965 +1599 Titan Relay View
13354457 6 3485 1886 +1599 Ultra Sound View
13354203 5 3464 1870 +1594 Ultra Sound View
13357990 2 3405 1823 +1582 BloXroute Max Profit View
13356836 9 3515 1933 +1582 BloXroute Regulated View
13356622 11 3538 1965 +1573 BloXroute Regulated View
13355636 3 3409 1839 +1570 BloXroute Max Profit View
13356989 10 3512 1949 +1563 BloXroute Max Profit View
13355461 1 3369 1807 +1562 Ultra Sound View
13356900 0 3353 1791 +1562 Agnostic Gnosis View
13355772 6 3444 1886 +1558 BloXroute Regulated View
13354506 5 3428 1870 +1558 Titan Relay View
13354943 1 3363 1807 +1556 Ultra Sound View
13359424 5 3426 1870 +1556 BloXroute Regulated View
13359318 0 3347 1791 +1556 Ultra Sound View
13355713 0 3347 1791 +1556 Titan Relay View
13354204 0 3344 1791 +1553 Ultra Sound View
13355390 0 3342 1791 +1551 BloXroute Max Profit View
13358293 5 3420 1870 +1550 BloXroute Regulated View
13356328 1 3351 1807 +1544 BloXroute Regulated View
13355870 1 3351 1807 +1544 Titan Relay View
13356560 1 3350 1807 +1543 BloXroute Regulated View
13357524 10 3491 1949 +1542 BloXroute Max Profit View
13358464 0 3332 1791 +1541 BloXroute Regulated View
13357238 2 3358 1823 +1535 Titan Relay View
13356040 4 3387 1854 +1533 Ultra Sound View
13352928 6 3413 1886 +1527 BloXroute Regulated View
13353106 1 3333 1807 +1526 Ultra Sound View
13355808 5 3386 1870 +1516 BloXroute Max Profit View
13358624 0 3306 1791 +1515 BloXroute Regulated View
13355967 14 3525 2012 +1513 Ultra Sound View
13356216 4 3366 1854 +1512 BloXroute Max Profit View
13357142 6 3397 1886 +1511 BloXroute Max Profit View
13354234 0 3300 1791 +1509 Titan Relay View
13356365 0 3295 1791 +1504 Ultra Sound View
13354115 1 3310 1807 +1503 BloXroute Regulated View
13358269 1 3309 1807 +1502 Agnostic Gnosis View
13357779 3 3339 1839 +1500 Titan Relay View
13354898 1 3307 1807 +1500 Ultra Sound View
13359042 0 3287 1791 +1496 Ultra Sound View
13356683 0 3278 1791 +1487 Titan Relay View
13357109 9 3420 1933 +1487 BloXroute Regulated View
13358330 3 3321 1839 +1482 BloXroute Regulated View
13354791 4 3335 1854 +1481 BloXroute Regulated View
13359590 5 3346 1870 +1476 Titan Relay View
13358552 5 3346 1870 +1476 BloXroute Regulated View
13356361 2 3296 1823 +1473 Ultra Sound View
13357868 3 3304 1839 +1465 BloXroute Regulated View
13357352 4 3319 1854 +1465 Ultra Sound View
13358135 14 3474 2012 +1462 BloXroute Regulated View
13354737 10 3406 1949 +1457 Ultra Sound View
13354032 0 3248 1791 +1457 Ultra Sound View
13355757 6 3336 1886 +1450 Titan Relay View
13352687 10 3399 1949 +1450 Titan Relay View
13357177 8 3367 1918 +1449 Ultra Sound View
13357534 11 3405 1965 +1440 Titan Relay View
13357284 4 3294 1854 +1440 BloXroute Max Profit View
13353859 6 3322 1886 +1436 BloXroute Max Profit View
13358108 3 3273 1839 +1434 Titan Relay View
13355072 6 3320 1886 +1434 Ultra Sound View
13354277 1 3240 1807 +1433 BloXroute Regulated View
13355630 0 3215 1791 +1424 BloXroute Regulated View
13352990 7 3325 1902 +1423 Ultra Sound View
13358922 6 3308 1886 +1422 BloXroute Regulated View
13352713 5 3292 1870 +1422 Ultra Sound View
13356688 6 3303 1886 +1417 BloXroute Max Profit View
13352422 10 3363 1949 +1414 Flashbots View
13352665 9 3345 1933 +1412 Titan Relay View
13356056 1 3216 1807 +1409 BloXroute Regulated View
13353578 5 3279 1870 +1409 Ultra Sound View
13356252 0 3196 1791 +1405 Ultra Sound View
13353329 4 3258 1854 +1404 Ultra Sound View
13357418 8 3321 1918 +1403 BloXroute Regulated View
13354902 4 3257 1854 +1403 Ultra Sound View
13355000 6 3288 1886 +1402 Ultra Sound View
13357285 8 3319 1918 +1401 Titan Relay View
13357378 14 3410 2012 +1398 BloXroute Max Profit View
13357214 9 3331 1933 +1398 Ultra Sound View
13355588 0 3185 1791 +1394 Aestus View
13358479 10 3341 1949 +1392 Titan Relay View
13354606 10 3339 1949 +1390 Ultra Sound View
13353315 9 3323 1933 +1390 Titan Relay View
13356037 11 3351 1965 +1386 BloXroute Regulated View
13352701 12 3365 1981 +1384 BloXroute Max Profit View
13356635 0 3174 1791 +1383 Ultra Sound View
13354315 9 3315 1933 +1382 Ultra Sound View
13359387 6 3265 1886 +1379 BloXroute Max Profit View
13352893 13 3373 1996 +1377 BloXroute Regulated View
13358802 12 3357 1981 +1376 BloXroute Regulated View
13354992 0 3164 1791 +1373 Ultra Sound View
13359203 3 3210 1839 +1371 Agnostic Gnosis View
13356512 11 3335 1965 +1370 BloXroute Max Profit View
13359188 0 3160 1791 +1369 BloXroute Regulated View
13352419 0 3160 1791 +1369 BloXroute Max Profit View
13354740 0 3159 1791 +1368 BloXroute Max Profit View
13356258 8 3285 1918 +1367 Ultra Sound View
Total anomalies: 179

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})