Wed, Dec 31, 2025

Propagation anomalies - 2025-12-31

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-31' AND slot_start_date_time < '2025-12-31'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-31' AND slot_start_date_time < '2025-12-31'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-31' AND slot_start_date_time < '2025-12-31'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-31' AND slot_start_date_time < '2025-12-31'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-31' AND slot_start_date_time < '2025-12-31'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-31' AND slot_start_date_time < '2025-12-31'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2025-12-31' AND slot_start_date_time < '2025-12-31'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2025-12-31' AND slot_start_date_time < '2025-12-31'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,176
MEV blocks: 6,719 (93.6%)
Local blocks: 457 (6.4%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1729.4 + 25.38 × blob_count (R² = 0.024)
Residual σ = 608.7ms
Anomalies (>2σ slow): 309 (4.3%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13363744 0 5534 1729 +3805 Local View
13362368 0 4757 1729 +3028 Local View
13365408 0 4486 1729 +2757 Local View
13363105 0 4120 1729 +2391 Local View
13363104 15 4459 2110 +2349 Local View
13364641 0 3870 1729 +2141 Local View
13365981 0 3808 1729 +2079 Local View
13360398 0 3748 1729 +2019 Ultra Sound View
13365883 6 3889 1882 +2007 Titan Relay View
13366048 8 3843 1932 +1911 BloXroute Regulated View
13365980 15 4015 2110 +1905 Ultra Sound View
13363329 0 3593 1729 +1864 Titan Relay View
13360150 3 3659 1806 +1853 Ultra Sound View
13362704 0 3564 1729 +1835 BloXroute Max Profit View
13364295 4 3622 1831 +1791 Ultra Sound View
13363484 6 3668 1882 +1786 BloXroute Max Profit View
13365377 4 3616 1831 +1785 Ultra Sound View
13361101 5 3616 1856 +1760 Ultra Sound View
13362124 0 3486 1729 +1757 Local View
13362883 3 3554 1806 +1748 Aestus View
13360939 5 3601 1856 +1745 Ultra Sound View
13365478 5 3599 1856 +1743 BloXroute Regulated View
13366770 2 3519 1780 +1739 Ultra Sound View
13364217 1 3483 1755 +1728 Titan Relay View
13362961 9 3679 1958 +1721 Ultra Sound View
13365143 6 3590 1882 +1708 Ultra Sound View
13361363 6 3574 1882 +1692 Ultra Sound View
13366705 0 3420 1729 +1691 Flashbots View
13360309 0 3420 1729 +1691 BloXroute Max Profit View
13365603 11 3698 2009 +1689 Titan Relay View
13366094 3 3490 1806 +1684 Ultra Sound View
13360623 7 3588 1907 +1681 Ultra Sound View
13366746 1 3434 1755 +1679 Flashbots View
13361724 8 3598 1932 +1666 Titan Relay View
13362526 6 3547 1882 +1665 Ultra Sound View
13360037 6 3542 1882 +1660 BloXroute Max Profit View
13364032 0 3372 1729 +1643 Titan Relay View
13365291 5 3498 1856 +1642 Local View
13361948 3 3414 1806 +1608 Ultra Sound View
13363706 5 3464 1856 +1608 Aestus View
13360388 0 3324 1729 +1595 Ultra Sound View
13360800 0 3318 1729 +1589 Aestus View
13364752 12 3609 2034 +1575 Ultra Sound View
13364430 0 3304 1729 +1575 Ultra Sound View
13365690 0 3295 1729 +1566 Titan Relay View
13361795 8 3496 1932 +1564 BloXroute Regulated View
13364395 0 3288 1729 +1559 Aestus View
13363315 3 3364 1806 +1558 Ultra Sound View
13361300 0 3287 1729 +1558 BloXroute Regulated View
13365067 5 3412 1856 +1556 Titan Relay View
13362646 0 3281 1729 +1552 Titan Relay View
13365299 0 3279 1729 +1550 Flashbots View
13366422 3 3351 1806 +1545 Ultra Sound View
13360767 2 3325 1780 +1545 BloXroute Regulated View
13361352 5 3401 1856 +1545 Ultra Sound View
13361004 6 3425 1882 +1543 BloXroute Regulated View
13366790 2 3316 1780 +1536 Titan Relay View
13366688 0 3262 1729 +1533 Flashbots View
13359968 0 3261 1729 +1532 Titan Relay View
13365908 2 3306 1780 +1526 Titan Relay View
13363712 5 3381 1856 +1525 Ultra Sound View
13366118 11 3531 2009 +1522 BloXroute Max Profit View
13361086 6 3400 1882 +1518 Titan Relay View
13365504 0 3244 1729 +1515 Ultra Sound View
13362623 5 3370 1856 +1514 Titan Relay View
13365584 2 3291 1780 +1511 BloXroute Regulated View
13366304 6 3391 1882 +1509 Ultra Sound View
13359728 0 3233 1729 +1504 Flashbots View
13366007 0 3230 1729 +1501 BloXroute Regulated View
13364833 6 3378 1882 +1496 Ultra Sound View
13361340 6 3375 1882 +1493 Titan Relay View
13366504 0 3220 1729 +1491 BloXroute Regulated View
13365623 5 3337 1856 +1481 BloXroute Regulated View
13364721 0 3210 1729 +1481 BloXroute Max Profit View
13360336 4 3311 1831 +1480 BloXroute Regulated View
13359739 5 3334 1856 +1478 Titan Relay View
13363232 8 3410 1932 +1478 BloXroute Max Profit View
13366286 5 3333 1856 +1477 BloXroute Regulated View
13365048 9 3424 1958 +1466 Flashbots View
13362728 1 3220 1755 +1465 Titan Relay View
13365713 4 3292 1831 +1461 Titan Relay View
13362414 5 3317 1856 +1461 BloXroute Max Profit View
13363717 5 3316 1856 +1460 BloXroute Regulated View
13364436 5 3313 1856 +1457 BloXroute Regulated View
13359732 6 3333 1882 +1451 Titan Relay View
13361399 5 3306 1856 +1450 BloXroute Regulated View
13364165 6 3331 1882 +1449 BloXroute Max Profit View
13365024 0 3177 1729 +1448 Ultra Sound View
13365994 3 3253 1806 +1447 Ultra Sound View
13360656 4 3276 1831 +1445 BloXroute Regulated View
13364755 0 3174 1729 +1445 Ultra Sound View
13361923 5 3298 1856 +1442 Titan Relay View
13361589 1 3195 1755 +1440 BloXroute Regulated View
13363966 6 3319 1882 +1437 BloXroute Regulated View
13360118 6 3314 1882 +1432 BloXroute Max Profit View
13366717 8 3362 1932 +1430 Titan Relay View
13362789 3 3234 1806 +1428 Ultra Sound View
13366633 5 3284 1856 +1428 Titan Relay View
13363110 3 3229 1806 +1423 Agnostic Gnosis View
13361960 6 3303 1882 +1421 Titan Relay View
13362757 4 3252 1831 +1421 BloXroute Regulated View
13361940 6 3299 1882 +1417 Ultra Sound View
13363242 5 3272 1856 +1416 BloXroute Regulated View
13362606 0 3144 1729 +1415 BloXroute Max Profit View
13365245 10 3391 1983 +1408 Ultra Sound View
13365646 0 3136 1729 +1407 BloXroute Regulated View
13361713 0 3134 1729 +1405 BloXroute Regulated View
13362063 1 3159 1755 +1404 Titan Relay View
13364525 9 3359 1958 +1401 Ultra Sound View
13362667 8 3333 1932 +1401 Titan Relay View
13363386 5 3256 1856 +1400 BloXroute Regulated View
13359737 13 3456 2059 +1397 Ultra Sound View
13364658 0 3126 1729 +1397 Ultra Sound View
13366021 0 3126 1729 +1397 Ultra Sound View
13363439 8 3328 1932 +1396 Titan Relay View
13361882 3 3200 1806 +1394 BloXroute Max Profit View
13360126 10 3371 1983 +1388 BloXroute Regulated View
13363766 0 3116 1729 +1387 BloXroute Regulated View
13365206 0 3115 1729 +1386 Flashbots View
13366623 7 3291 1907 +1384 BloXroute Max Profit View
13362836 8 3316 1932 +1384 Titan Relay View
13364347 1 3134 1755 +1379 Ultra Sound View
13365619 9 3337 1958 +1379 Ultra Sound View
13364552 3 3183 1806 +1377 BloXroute Max Profit View
13362371 1 3132 1755 +1377 BloXroute Max Profit View
13364206 1 3132 1755 +1377 BloXroute Regulated View
13365957 12 3411 2034 +1377 BloXroute Regulated View
13365419 5 3233 1856 +1377 BloXroute Max Profit View
13363615 1 3130 1755 +1375 Ultra Sound View
13360508 5 3225 1856 +1369 Ultra Sound View
13360945 1 3123 1755 +1368 BloXroute Max Profit View
13364995 4 3199 1831 +1368 BloXroute Regulated View
13360990 1 3122 1755 +1367 Ultra Sound View
13365815 2 3147 1780 +1367 BloXroute Regulated View
13364083 5 3222 1856 +1366 Titan Relay View
13360590 0 3095 1729 +1366 BloXroute Max Profit View
13362562 0 3094 1729 +1365 BloXroute Max Profit View
13365581 10 3346 1983 +1363 BloXroute Regulated View
13365468 4 3193 1831 +1362 BloXroute Regulated View
13362166 6 3242 1882 +1360 Ultra Sound View
13360104 1 3115 1755 +1360 Flashbots View
13364286 9 3318 1958 +1360 Ultra Sound View
13366341 5 3216 1856 +1360 BloXroute Regulated View
13359786 0 3088 1729 +1359 BloXroute Max Profit View
13366672 0 3088 1729 +1359 BloXroute Regulated View
13364432 1 3113 1755 +1358 Titan Relay View
13361700 0 3087 1729 +1358 BloXroute Regulated View
13363715 0 3087 1729 +1358 Flashbots View
13359794 0 3085 1729 +1356 BloXroute Regulated View
13364297 4 3186 1831 +1355 Agnostic Gnosis View
13366033 1 3109 1755 +1354 BloXroute Max Profit View
13362367 0 3083 1729 +1354 Titan Relay View
13361451 0 3083 1729 +1354 BloXroute Regulated View
13364211 2 3133 1780 +1353 Titan Relay View
13360108 8 3285 1932 +1353 Titan Relay View
13366174 1 3107 1755 +1352 Ultra Sound View
13360762 8 3282 1932 +1350 Ultra Sound View
13366147 5 3205 1856 +1349 Ultra Sound View
13366224 5 3204 1856 +1348 Ultra Sound View
13363598 5 3203 1856 +1347 BloXroute Max Profit View
13364273 5 3203 1856 +1347 Ultra Sound View
13360919 0 3075 1729 +1346 Ultra Sound View
13364517 1 3100 1755 +1345 BloXroute Regulated View
13360842 1 3100 1755 +1345 BloXroute Max Profit View
13360359 13 3404 2059 +1345 Titan Relay View
13363234 0 3074 1729 +1345 Ultra Sound View
13364571 0 3072 1729 +1343 Ultra Sound View
13359810 1 3095 1755 +1340 BloXroute Max Profit View
13363192 0 3066 1729 +1337 Ultra Sound View
13361781 1 3090 1755 +1335 Agnostic Gnosis View
13365549 1 3088 1755 +1333 BloXroute Regulated View
13365868 12 3367 2034 +1333 Ultra Sound View
13363491 6 3214 1882 +1332 Ultra Sound View
13361263 7 3238 1907 +1331 Ultra Sound View
13364626 3 3136 1806 +1330 BloXroute Max Profit View
13361860 1 3085 1755 +1330 BloXroute Max Profit View
13365973 1 3084 1755 +1329 Flashbots View
13364444 5 3185 1856 +1329 Agnostic Gnosis View
13359645 0 3058 1729 +1329 BloXroute Regulated View
13364509 7 3235 1907 +1328 Ultra Sound View
13362516 0 3056 1729 +1327 Flashbots View
13363436 6 3206 1882 +1324 Agnostic Gnosis View
13362210 5 3180 1856 +1324 Ultra Sound View
13362469 0 3053 1729 +1324 Ultra Sound View
13363208 8 3256 1932 +1324 Ultra Sound View
13362262 11 3332 2009 +1323 Ultra Sound View
13362386 0 3052 1729 +1323 Flashbots View
13365747 4 3153 1831 +1322 BloXroute Max Profit View
13361486 1 3076 1755 +1321 Ultra Sound View
13366283 8 3252 1932 +1320 Ultra Sound View
13365821 1 3074 1755 +1319 Ultra Sound View
13360828 12 3353 2034 +1319 Titan Relay View
13366619 0 3045 1729 +1316 BloXroute Regulated View
13365967 2 3095 1780 +1315 BloXroute Max Profit View
13362697 0 3044 1729 +1315 Agnostic Gnosis View
13365589 3 3117 1806 +1311 Aestus View
13360230 1 3064 1755 +1309 BloXroute Regulated View
13362719 1 3063 1755 +1308 BloXroute Max Profit View
13363757 5 3164 1856 +1308 Agnostic Gnosis View
13362578 3 3112 1806 +1306 Ultra Sound View
13365375 1 3058 1755 +1303 Ultra Sound View
13364263 4 3133 1831 +1302 Ultra Sound View
13361962 2 3082 1780 +1302 BloXroute Max Profit View
13365110 5 3157 1856 +1301 Ultra Sound View
13361309 0 3030 1729 +1301 Ultra Sound View
13361127 1 3055 1755 +1300 BloXroute Max Profit View
13364824 9 3258 1958 +1300 Ultra Sound View
13365124 1 3054 1755 +1299 BloXroute Max Profit View
13363697 0 3028 1729 +1299 BloXroute Max Profit View
13360807 13 3357 2059 +1298 Local View
13361211 0 3027 1729 +1298 Titan Relay View
13361799 4 3128 1831 +1297 BloXroute Regulated View
13360871 5 3153 1856 +1297 BloXroute Regulated View
13364867 3 3102 1806 +1296 Aestus View
13362178 6 3178 1882 +1296 Flashbots View
13365010 10 3279 1983 +1296 Ultra Sound View
13360558 0 3025 1729 +1296 Aestus View
13361120 0 3024 1729 +1295 Ultra Sound View
13365260 5 3150 1856 +1294 BloXroute Max Profit View
13364128 5 3146 1856 +1290 Titan Relay View
13359635 0 3016 1729 +1287 Ultra Sound View
13361928 0 3015 1729 +1286 Titan Relay View
13359792 9 3243 1958 +1285 BloXroute Max Profit View
13363690 5 3141 1856 +1285 BloXroute Max Profit View
13364357 5 3141 1856 +1285 BloXroute Regulated View
13364274 0 3014 1729 +1285 BloXroute Max Profit View
13360106 8 3217 1932 +1285 Flashbots View
13359676 10 3267 1983 +1284 Ultra Sound View
13361191 0 3013 1729 +1284 Ultra Sound View
13363062 14 3368 2085 +1283 Ultra Sound View
13365486 7 3190 1907 +1283 BloXroute Max Profit View
13365721 5 3139 1856 +1283 BloXroute Regulated View
13359652 8 3215 1932 +1283 Flashbots View
13364989 11 3291 2009 +1282 Ultra Sound View
13362245 2 3062 1780 +1282 Titan Relay View
13364568 6 3163 1882 +1281 Titan Relay View
13365959 0 3010 1729 +1281 Ultra Sound View
13361094 0 3010 1729 +1281 BloXroute Max Profit View
13360787 3 3086 1806 +1280 Flashbots View
13363736 1 3035 1755 +1280 BloXroute Max Profit View
13361091 1 3034 1755 +1279 BloXroute Max Profit View
13362681 0 3006 1729 +1277 Ultra Sound View
13366701 5 3132 1856 +1276 BloXroute Regulated View
13365239 0 3005 1729 +1276 BloXroute Max Profit View
13362156 9 3233 1958 +1275 BloXroute Max Profit View
13365574 0 3004 1729 +1275 BloXroute Regulated View
13360090 0 3004 1729 +1275 BloXroute Max Profit View
13360413 2 3054 1780 +1274 BloXroute Max Profit View
13359633 8 3206 1932 +1274 Agnostic Gnosis View
13365077 0 3002 1729 +1273 BloXroute Max Profit View
13361954 0 3001 1729 +1272 Flashbots View
13364526 0 3000 1729 +1271 Flashbots View
13361552 0 2999 1729 +1270 Ultra Sound View
13365293 0 2999 1729 +1270 BloXroute Max Profit View
13362381 1 3023 1755 +1268 Titan Relay View
13364454 4 3099 1831 +1268 Aestus View
13363314 0 2995 1729 +1266 BloXroute Max Profit View
13365724 10 3247 1983 +1264 BloXroute Max Profit View
13361454 3 3068 1806 +1262 BloXroute Max Profit View
13362725 3 3068 1806 +1262 Flashbots View
13361287 0 2990 1729 +1261 BloXroute Max Profit View
13366103 2 3039 1780 +1259 Agnostic Gnosis View
13361588 0 2988 1729 +1259 BloXroute Max Profit View
13360758 12 3292 2034 +1258 Titan Relay View
13361640 0 2987 1729 +1258 BloXroute Max Profit View
13360171 5 3113 1856 +1257 BloXroute Max Profit View
13363942 0 2984 1729 +1255 Ultra Sound View
13360701 2 3034 1780 +1254 BloXroute Regulated View
13362995 5 3110 1856 +1254 BloXroute Max Profit View
13359942 8 3186 1932 +1254 Ultra Sound View
13365306 3 3058 1806 +1252 Titan Relay View
13363351 3 3057 1806 +1251 Flashbots View
13361182 4 3082 1831 +1251 Ultra Sound View
13365617 0 2980 1729 +1251 BloXroute Regulated View
13366647 8 3183 1932 +1251 BloXroute Max Profit View
13365432 1 3005 1755 +1250 Titan Relay View
13365427 5 3106 1856 +1250 Titan Relay View
13364210 7 3155 1907 +1248 Titan Relay View
13366479 5 3103 1856 +1247 BloXroute Max Profit View
13360700 8 3177 1932 +1245 Ultra Sound View
13362701 6 3125 1882 +1243 BloXroute Max Profit View
13362223 5 3098 1856 +1242 BloXroute Max Profit View
13364520 0 2971 1729 +1242 BloXroute Max Profit View
13362582 5 3097 1856 +1241 Ultra Sound View
13361008 6 3122 1882 +1240 Agnostic Gnosis View
13363249 6 3121 1882 +1239 BloXroute Regulated View
13362420 5 3095 1856 +1239 Flashbots View
13361154 5 3095 1856 +1239 BloXroute Max Profit View
13361983 5 3095 1856 +1239 Ultra Sound View
13363648 0 2968 1729 +1239 BloXroute Max Profit View
13359832 5 3093 1856 +1237 BloXroute Max Profit View
13366290 0 2966 1729 +1237 BloXroute Max Profit View
13365629 6 3117 1882 +1235 Ultra Sound View
13360936 0 2964 1729 +1235 BloXroute Regulated View
13364699 0 2964 1729 +1235 BloXroute Regulated View
13365593 0 2964 1729 +1235 Flashbots View
13363677 4 3065 1831 +1234 BloXroute Regulated View
13364929 5 3089 1856 +1233 Titan Relay View
13366245 6 3114 1882 +1232 Flashbots View
13366082 5 3087 1856 +1231 BloXroute Max Profit View
13365082 5 3085 1856 +1229 BloXroute Max Profit View
13359647 6 3110 1882 +1228 BloXroute Max Profit View
13361080 5 3084 1856 +1228 BloXroute Max Profit View
13365785 7 3132 1907 +1225 Flashbots View
13363459 3 3029 1806 +1223 Ultra Sound View
13360439 0 2951 1729 +1222 Ultra Sound View
13366251 8 3153 1932 +1221 Ultra Sound View
13365347 5 3075 1856 +1219 Titan Relay View
13364697 1 2973 1755 +1218 Flashbots View
Total anomalies: 309

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})