Fri, Jan 2, 2026

Propagation anomalies - 2026-01-02

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-02' AND slot_start_date_time < '2026-01-02'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-02' AND slot_start_date_time < '2026-01-02'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-02' AND slot_start_date_time < '2026-01-02'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-02' AND slot_start_date_time < '2026-01-02'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-02' AND slot_start_date_time < '2026-01-02'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-02' AND slot_start_date_time < '2026-01-02'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-02' AND slot_start_date_time < '2026-01-02'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-02' AND slot_start_date_time < '2026-01-02'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,177
MEV blocks: 6,698 (93.3%)
Local blocks: 479 (6.7%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1768.5 + 19.05 × blob_count (R² = 0.013)
Residual σ = 616.0ms
Anomalies (>2σ slow): 270 (3.8%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13378564 0 6947 1768 +5179 Local View
13378880 15 4675 2054 +2621 Local View
13378687 0 4085 1768 +2317 BloXroute Max Profit View
13374432 4 4144 1845 +2299 Local View
13380543 7 4199 1902 +2297 Ultra Sound View
13374383 6 3832 1883 +1949 Ultra Sound View
13374525 3 3727 1826 +1901 Ultra Sound View
13380372 1 3646 1788 +1858 Titan Relay View
13376164 14 3831 2035 +1796 BloXroute Regulated View
13375949 1 3581 1788 +1793 BloXroute Max Profit View
13379604 1 3565 1788 +1777 BloXroute Regulated View
13376785 0 3543 1768 +1775 BloXroute Regulated View
13374450 3 3593 1826 +1767 Ultra Sound View
13376693 0 3523 1768 +1755 Titan Relay View
13379527 4 3598 1845 +1753 Ultra Sound View
13375954 1 3536 1788 +1748 Ultra Sound View
13375783 3 3573 1826 +1747 BloXroute Regulated View
13376073 1 3528 1788 +1740 Ultra Sound View
13380557 5 3602 1864 +1738 Ultra Sound View
13374683 3 3561 1826 +1735 Ultra Sound View
13376429 6 3618 1883 +1735 Ultra Sound View
13377142 7 3612 1902 +1710 BloXroute Max Profit View
13378002 6 3580 1883 +1697 Ultra Sound View
13381168 5 3558 1864 +1694 Ultra Sound View
13377277 7 3593 1902 +1691 Titan Relay View
13375100 3 3509 1826 +1683 BloXroute Regulated View
13378632 3 3508 1826 +1682 BloXroute Regulated View
13378033 6 3561 1883 +1678 Ultra Sound View
13376705 0 3436 1768 +1668 Ultra Sound View
13377141 11 3638 1978 +1660 Ultra Sound View
13375358 0 3424 1768 +1656 Ultra Sound View
13374373 4 3498 1845 +1653 BloXroute Max Profit View
13379375 6 3532 1883 +1649 Flashbots View
13377557 9 3589 1940 +1649 Ultra Sound View
13378204 0 3408 1768 +1640 BloXroute Regulated View
13375456 1 3427 1788 +1639 Ultra Sound View
13376030 0 3407 1768 +1639 Ultra Sound View
13374672 5 3496 1864 +1632 Ultra Sound View
13374137 0 3396 1768 +1628 Titan Relay View
13378187 1 3400 1788 +1612 Flashbots View
13376915 13 3621 2016 +1605 Ultra Sound View
13374160 5 3466 1864 +1602 Ultra Sound View
13378475 12 3595 1997 +1598 Titan Relay View
13374134 6 3468 1883 +1585 Ultra Sound View
13377189 3 3405 1826 +1579 BloXroute Max Profit View
13377130 3 3401 1826 +1575 Titan Relay View
13374153 5 3439 1864 +1575 Ultra Sound View
13377996 8 3493 1921 +1572 Ultra Sound View
13380704 1 3345 1788 +1557 Flashbots View
13377503 0 3325 1768 +1557 Titan Relay View
13375700 0 3319 1768 +1551 Ultra Sound View
13378545 0 3318 1768 +1550 Titan Relay View
13380500 2 3352 1807 +1545 BloXroute Regulated View
13380421 1 3332 1788 +1544 Titan Relay View
13380786 7 3444 1902 +1542 Ultra Sound View
13374144 7 3444 1902 +1542 EthGas View
13374128 3 3364 1826 +1538 Ultra Sound View
13374912 6 3412 1883 +1529 Ultra Sound View
13378250 1 3315 1788 +1527 Ultra Sound View
13379938 4 3371 1845 +1526 Titan Relay View
13379499 5 3389 1864 +1525 Ultra Sound View
13377680 5 3387 1864 +1523 Titan Relay View
13378457 14 3558 2035 +1523 BloXroute Regulated View
13376998 0 3286 1768 +1518 BloXroute Regulated View
13379317 2 3324 1807 +1517 Titan Relay View
13375237 3 3341 1826 +1515 BloXroute Regulated View
13380436 2 3308 1807 +1501 BloXroute Regulated View
13378744 4 3344 1845 +1499 Titan Relay View
13380582 1 3284 1788 +1496 BloXroute Regulated View
13376576 0 3262 1768 +1494 Local View
13378595 1 3278 1788 +1490 BloXroute Regulated View
13374905 3 3312 1826 +1486 BloXroute Regulated View
13379002 5 3350 1864 +1486 BloXroute Regulated View
13374141 1 3272 1788 +1484 Aestus View
13378959 5 3348 1864 +1484 Ultra Sound View
13379217 12 3478 1997 +1481 Local View
13378566 8 3401 1921 +1480 Ultra Sound View
13377008 5 3342 1864 +1478 BloXroute Regulated View
13380153 13 3492 2016 +1476 Ultra Sound View
13380152 2 3281 1807 +1474 BloXroute Regulated View
13378301 5 3338 1864 +1474 BloXroute Regulated View
13374127 0 3242 1768 +1474 Ultra Sound View
13376868 6 3352 1883 +1469 BloXroute Regulated View
13377952 6 3352 1883 +1469 Ultra Sound View
13377647 3 3294 1826 +1468 Ultra Sound View
13375262 0 3235 1768 +1467 BloXroute Regulated View
13380465 0 3234 1768 +1466 Ultra Sound View
13379998 4 3306 1845 +1461 Titan Relay View
13376739 1 3246 1788 +1458 BloXroute Max Profit View
13380840 0 3225 1768 +1457 Ultra Sound View
13374203 8 3377 1921 +1456 Titan Relay View
13376544 5 3319 1864 +1455 Ultra Sound View
13381180 7 3354 1902 +1452 BloXroute Regulated View
13377835 3 3277 1826 +1451 Local View
13374133 12 3448 1997 +1451 BloXroute Regulated View
13377729 2 3257 1807 +1450 Titan Relay View
13380312 6 3332 1883 +1449 BloXroute Regulated View
13380281 2 3253 1807 +1446 Ultra Sound View
13380345 12 3436 1997 +1439 BloXroute Regulated View
13377164 5 3302 1864 +1438 Ultra Sound View
13376840 5 3302 1864 +1438 EthGas View
13374378 0 3206 1768 +1438 Ultra Sound View
13374291 13 3453 2016 +1437 Flashbots View
13375972 1 3223 1788 +1435 Flashbots View
13377614 0 3203 1768 +1435 BloXroute Regulated View
13380520 4 3279 1845 +1434 BloXroute Regulated View
13374024 8 3350 1921 +1429 BloXroute Regulated View
13379984 6 3309 1883 +1426 BloXroute Regulated View
13379702 9 3366 1940 +1426 BloXroute Regulated View
13376484 5 3287 1864 +1423 BloXroute Regulated View
13374459 5 3286 1864 +1422 Ultra Sound View
13376979 13 3438 2016 +1422 Ultra Sound View
13378029 6 3303 1883 +1420 Ultra Sound View
13380542 6 3299 1883 +1416 BloXroute Regulated View
13379766 7 3318 1902 +1416 BloXroute Max Profit View
13375436 6 3298 1883 +1415 BloXroute Regulated View
13374363 2 3218 1807 +1411 BloXroute Regulated View
13379421 7 3312 1902 +1410 BloXroute Regulated View
13380949 7 3310 1902 +1408 BloXroute Regulated View
13374707 3 3233 1826 +1407 BloXroute Regulated View
13378239 9 3346 1940 +1406 BloXroute Regulated View
13377637 1 3188 1788 +1400 BloXroute Regulated View
13374691 1 3187 1788 +1399 Ultra Sound View
13378907 5 3263 1864 +1399 Ultra Sound View
13376002 8 3319 1921 +1398 BloXroute Regulated View
13381084 10 3356 1959 +1397 BloXroute Regulated View
13377424 9 3336 1940 +1396 BloXroute Regulated View
13374534 5 3255 1864 +1391 Titan Relay View
13380004 8 3312 1921 +1391 BloXroute Regulated View
13376063 1 3178 1788 +1390 BloXroute Regulated View
13374318 9 3330 1940 +1390 BloXroute Max Profit View
13378086 9 3324 1940 +1384 BloXroute Regulated View
13376408 6 3263 1883 +1380 BloXroute Regulated View
13377542 3 3204 1826 +1378 BloXroute Regulated View
13376397 8 3299 1921 +1378 BloXroute Regulated View
13376431 1 3165 1788 +1377 BloXroute Regulated View
13378395 10 3332 1959 +1373 Ultra Sound View
13377876 6 3254 1883 +1371 BloXroute Max Profit View
13377112 10 3329 1959 +1370 Ultra Sound View
13378980 1 3157 1788 +1369 BloXroute Max Profit View
13374211 0 3136 1768 +1368 BloXroute Regulated View
13375280 3 3192 1826 +1366 BloXroute Regulated View
13376773 5 3228 1864 +1364 BloXroute Max Profit View
13377074 5 3225 1864 +1361 Titan Relay View
13377331 6 3244 1883 +1361 BloXroute Max Profit View
13378932 0 3129 1768 +1361 Flashbots View
13378978 3 3185 1826 +1359 BloXroute Max Profit View
13380866 7 3259 1902 +1357 Ultra Sound View
13376452 5 3220 1864 +1356 Titan Relay View
13378526 0 3124 1768 +1356 BloXroute Regulated View
13375184 0 3123 1768 +1355 BloXroute Regulated View
13379999 6 3236 1883 +1353 Ultra Sound View
13377638 0 3121 1768 +1353 Titan Relay View
13377472 0 3120 1768 +1352 Ultra Sound View
13376264 1 3137 1788 +1349 Ultra Sound View
13377950 11 3326 1978 +1348 Titan Relay View
13375065 1 3135 1788 +1347 Agnostic Gnosis View
13379297 3 3173 1826 +1347 BloXroute Max Profit View
13378893 15 3400 2054 +1346 Titan Relay View
13375767 8 3264 1921 +1343 Ultra Sound View
13378139 3 3168 1826 +1342 Ultra Sound View
13378729 0 3110 1768 +1342 BloXroute Max Profit View
13379131 6 3224 1883 +1341 BloXroute Max Profit View
13379092 8 3259 1921 +1338 Ultra Sound View
13380986 7 3239 1902 +1337 BloXroute Max Profit View
13379965 6 3219 1883 +1336 Ultra Sound View
13380150 1 3123 1788 +1335 Ultra Sound View
13375620 0 3103 1768 +1335 Flashbots View
13378894 5 3197 1864 +1333 Ultra Sound View
13380179 6 3216 1883 +1333 Agnostic Gnosis View
13377850 2 3139 1807 +1332 BloXroute Max Profit View
13379639 4 3176 1845 +1331 Ultra Sound View
13376976 5 3191 1864 +1327 BloXroute Regulated View
13376492 9 3265 1940 +1325 Ultra Sound View
13380487 4 3168 1845 +1323 Agnostic Gnosis View
13374986 6 3206 1883 +1323 Ultra Sound View
13379946 1 3110 1788 +1322 Ultra Sound View
13379474 0 3090 1768 +1322 Flashbots View
13375684 0 3090 1768 +1322 BloXroute Regulated View
13377237 5 3182 1864 +1318 Ultra Sound View
13378296 15 3371 2054 +1317 BloXroute Max Profit View
13380218 12 3313 1997 +1316 Ultra Sound View
13378463 0 3083 1768 +1315 Aestus View
13378997 1 3101 1788 +1313 BloXroute Max Profit View
13376845 1 3100 1788 +1312 BloXroute Max Profit View
13374202 0 3080 1768 +1312 BloXroute Max Profit View
13377035 0 3080 1768 +1312 Ultra Sound View
13376985 0 3080 1768 +1312 BloXroute Max Profit View
13375084 3 3136 1826 +1310 Ultra Sound View
13375721 3 3135 1826 +1309 Ultra Sound View
13377298 8 3229 1921 +1308 Agnostic Gnosis View
13377632 13 3324 2016 +1308 Ultra Sound View
13375542 0 3076 1768 +1308 BloXroute Max Profit View
13377724 10 3265 1959 +1306 Ultra Sound View
13374581 7 3207 1902 +1305 Agnostic Gnosis View
13377333 0 3070 1768 +1302 BloXroute Max Profit View
13374735 8 3222 1921 +1301 BloXroute Max Profit View
13376185 6 3183 1883 +1300 BloXroute Max Profit View
13375196 6 3183 1883 +1300 Aestus View
13379772 1 3086 1788 +1298 BloXroute Max Profit View
13376863 6 3180 1883 +1297 BloXroute Regulated View
13380385 0 3065 1768 +1297 Agnostic Gnosis View
13376975 3 3122 1826 +1296 BloXroute Max Profit View
13377820 5 3159 1864 +1295 Flashbots View
13374574 0 3062 1768 +1294 Titan Relay View
13381015 9 3233 1940 +1293 Ultra Sound View
13379781 7 3193 1902 +1291 BloXroute Max Profit View
13380923 1 3078 1788 +1290 Ultra Sound View
13380293 1 3077 1788 +1289 Flashbots View
13379083 8 3209 1921 +1288 Ultra Sound View
13379642 2 3093 1807 +1286 Ultra Sound View
13374502 5 3149 1864 +1285 Aestus View
13377946 6 3166 1883 +1283 Ultra Sound View
13380966 1 3069 1788 +1281 Ultra Sound View
13375134 1 3069 1788 +1281 Ultra Sound View
13379026 11 3259 1978 +1281 Ultra Sound View
13380419 9 3220 1940 +1280 Ultra Sound View
13377853 8 3200 1921 +1279 Ultra Sound View
13378182 0 3047 1768 +1279 Aestus View
13381188 1 3066 1788 +1278 Ultra Sound View
13375062 3 3104 1826 +1278 Ultra Sound View
13377173 5 3142 1864 +1278 Ultra Sound View
13380376 9 3218 1940 +1278 BloXroute Max Profit View
13377840 0 3043 1768 +1275 BloXroute Max Profit View
13378780 0 3042 1768 +1274 Agnostic Gnosis View
13374170 1 3061 1788 +1273 Aestus View
13378024 0 3041 1768 +1273 Ultra Sound View
13377583 1 3060 1788 +1272 Ultra Sound View
13380758 2 3079 1807 +1272 BloXroute Regulated View
13374479 4 3117 1845 +1272 BloXroute Max Profit View
13377951 2 3078 1807 +1271 BloXroute Regulated View
13374312 5 3135 1864 +1271 BloXroute Regulated View
13379703 6 3154 1883 +1271 BloXroute Max Profit View
13380689 1 3055 1788 +1267 Flashbots View
13375769 0 3035 1768 +1267 Titan Relay View
13380642 1 3054 1788 +1266 Ultra Sound View
13380255 1 3052 1788 +1264 BloXroute Max Profit View
13380877 1 3051 1788 +1263 Titan Relay View
13377799 3 3089 1826 +1263 BloXroute Max Profit View
13377446 1 3050 1788 +1262 Titan Relay View
13381196 1 3050 1788 +1262 BloXroute Max Profit View
13374379 11 3239 1978 +1261 Titan Relay View
13374391 1 3048 1788 +1260 BloXroute Max Profit View
13374698 4 3104 1845 +1259 BloXroute Max Profit View
13376792 5 3123 1864 +1259 BloXroute Max Profit View
13380488 2 3064 1807 +1257 BloXroute Max Profit View
13381014 4 3102 1845 +1257 Aestus View
13379141 6 3140 1883 +1257 Ultra Sound View
13380838 4 3098 1845 +1253 BloXroute Max Profit View
13377169 0 3020 1768 +1252 Agnostic Gnosis View
13378856 0 3019 1768 +1251 BloXroute Max Profit View
13381141 1 3036 1788 +1248 BloXroute Max Profit View
13376857 2 3055 1807 +1248 Titan Relay View
13379873 6 3131 1883 +1248 BloXroute Max Profit View
13379177 6 3131 1883 +1248 Ultra Sound View
13379035 0 3016 1768 +1248 Titan Relay View
13375453 0 3014 1768 +1246 BloXroute Max Profit View
13374828 0 3014 1768 +1246 Ultra Sound View
13376532 0 3014 1768 +1246 Agnostic Gnosis View
13375118 3 3071 1826 +1245 BloXroute Regulated View
13376257 7 3145 1902 +1243 Ultra Sound View
13380738 1 3027 1788 +1239 Agnostic Gnosis View
13380916 2 3046 1807 +1239 Titan Relay View
13380725 4 3084 1845 +1239 BloXroute Max Profit View
13374257 6 3122 1883 +1239 BloXroute Max Profit View
13380159 1 3023 1788 +1235 Ultra Sound View
13374270 5 3099 1864 +1235 Aestus View
13378493 0 3002 1768 +1234 BloXroute Max Profit View
13375295 0 3002 1768 +1234 BloXroute Max Profit View
13375249 6 3115 1883 +1232 BloXroute Max Profit View
Total anomalies: 270

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})