Sat, Jan 3, 2026

Propagation anomalies - 2026-01-03

Detection of blocks that propagated slower than expected given their blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-03' AND slot_start_date_time < '2026-01-03'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-03' AND slot_start_date_time < '2026-01-03'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-03' AND slot_start_date_time < '2026-01-03'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-03' AND slot_start_date_time < '2026-01-03'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-03' AND slot_start_date_time < '2026-01-03'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-03' AND slot_start_date_time < '2026-01-03'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-03' AND slot_start_date_time < '2026-01-03'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-03' AND slot_start_date_time < '2026-01-03'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,183
MEV blocks: 6,686 (93.1%)
Local blocks: 497 (6.9%)

Anomaly detection method

Blocks that are slow relative to their blob count are more interesting than blocks that are simply slow. A 500ms block with 15 blobs may be normal; with 0 blobs it's anomalous.

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1769.7 + 19.42 × blob_count (R² = 0.012)
Residual σ = 637.8ms
Anomalies (>2σ slow): 246 (3.4%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Create Lab links
    df_table["lab_link"] = df_table["slot"].apply(
        lambda s: f'<a href="https://lab.ethpandaops.io/ethereum/slots/{s}" target="_blank">View</a>'
    )
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Relay</th><th>Lab</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        html += f'''<tr>
            <td>{row["slot"]}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["relay"]}</td>
            <td>{row["lab_link"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)RelayLab
13381212 0 11124 1770 +9354 Local View
13381952 0 8126 1770 +6356 Local View
13383280 0 6724 1770 +4954 Local View
13381216 0 5123 1770 +3353 Local View
13384416 0 4750 1770 +2980 Local View
13387136 0 4694 1770 +2924 Local View
13382464 0 4356 1770 +2586 Local View
13384013 0 4321 1770 +2551 Local View
13383072 0 4095 1770 +2325 Local View
13382080 0 3941 1770 +2171 Local View
13381725 2 3879 1808 +2071 Ultra Sound View
13388127 5 3859 1867 +1992 Local View
13385504 1 3756 1789 +1967 BloXroute Regulated View
13387077 3 3743 1828 +1915 BloXroute Regulated View
13387874 1 3675 1789 +1886 Titan Relay View
13388149 1 3649 1789 +1860 Flashbots View
13387358 5 3724 1867 +1857 Ultra Sound View
13382277 7 3762 1906 +1856 BloXroute Regulated View
13386016 6 3730 1886 +1844 Agnostic Gnosis View
13387154 1 3615 1789 +1826 Titan Relay View
13385844 1 3576 1789 +1787 Titan Relay View
13383174 7 3687 1906 +1781 BloXroute Regulated View
13382310 4 3622 1847 +1775 BloXroute Regulated View
13385069 0 3541 1770 +1771 Ultra Sound View
13385296 1 3560 1789 +1771 BloXroute Regulated View
13386657 3 3588 1828 +1760 BloXroute Regulated View
13381367 6 3636 1886 +1750 Titan Relay View
13384143 10 3694 1964 +1730 Titan Relay View
13387832 4 3573 1847 +1726 Ultra Sound View
13385125 9 3665 1944 +1721 BloXroute Regulated View
13387791 2 3529 1808 +1721 BloXroute Regulated View
13382935 6 3593 1886 +1707 Ultra Sound View
13385991 7 3608 1906 +1702 BloXroute Regulated View
13383888 7 3600 1906 +1694 BloXroute Regulated View
13383145 1 3478 1789 +1689 Local View
13386863 9 3625 1944 +1681 BloXroute Regulated View
13384873 8 3601 1925 +1676 Ultra Sound View
13382011 1 3461 1789 +1672 Ultra Sound View
13381768 10 3634 1964 +1670 Titan Relay View
13383896 3 3495 1828 +1667 Ultra Sound View
13386556 0 3430 1770 +1660 Ultra Sound View
13386056 2 3449 1808 +1641 BloXroute Max Profit View
13383682 1 3406 1789 +1617 Ultra Sound View
13383762 12 3618 2003 +1615 Ultra Sound View
13384864 1 3388 1789 +1599 BloXroute Regulated View
13382784 5 3463 1867 +1596 BloXroute Max Profit View
13385605 13 3618 2022 +1596 Titan Relay View
13388133 1 3384 1789 +1595 BloXroute Regulated View
13384243 11 3566 1983 +1583 Ultra Sound View
13383872 3 3390 1828 +1562 Ultra Sound View
13383415 0 3323 1770 +1553 Titan Relay View
13386344 6 3439 1886 +1553 BloXroute Regulated View
13386079 10 3513 1964 +1549 Ultra Sound View
13384976 2 3350 1808 +1542 Ultra Sound View
13381606 1 3330 1789 +1541 BloXroute Regulated View
13385864 8 3463 1925 +1538 BloXroute Regulated View
13384821 1 3323 1789 +1534 BloXroute Regulated View
13381416 9 3468 1944 +1524 BloXroute Regulated View
13381550 5 3390 1867 +1523 BloXroute Regulated View
13383393 7 3427 1906 +1521 BloXroute Regulated View
13386367 9 3459 1944 +1515 Titan Relay View
13385555 8 3438 1925 +1513 Local View
13381913 4 3357 1847 +1510 BloXroute Max Profit View
13387344 7 3413 1906 +1507 BloXroute Max Profit View
13384656 0 3270 1770 +1500 BloXroute Regulated View
13387801 6 3376 1886 +1490 Agnostic Gnosis View
13387826 1 3271 1789 +1482 BloXroute Regulated View
13382937 2 3288 1808 +1480 Ultra Sound View
13386022 15 3540 2061 +1479 Ultra Sound View
13386495 5 3345 1867 +1478 BloXroute Regulated View
13383785 5 3340 1867 +1473 BloXroute Regulated View
13381811 1 3262 1789 +1473 Titan Relay View
13384198 6 3358 1886 +1472 BloXroute Regulated View
13385597 0 3240 1770 +1470 BloXroute Regulated View
13384097 11 3453 1983 +1470 BloXroute Regulated View
13384612 0 3238 1770 +1468 BloXroute Regulated View
13385303 0 3236 1770 +1466 BloXroute Regulated View
13382008 4 3312 1847 +1465 BloXroute Regulated View
13382332 6 3350 1886 +1464 Titan Relay View
13386716 6 3349 1886 +1463 BloXroute Regulated View
13382441 1 3251 1789 +1462 BloXroute Regulated View
13382783 6 3345 1886 +1459 Titan Relay View
13381810 7 3361 1906 +1455 BloXroute Regulated View
13382060 1 3243 1789 +1454 BloXroute Regulated View
13384253 2 3261 1808 +1453 BloXroute Max Profit View
13387138 8 3374 1925 +1449 Ultra Sound View
13383929 1 3236 1789 +1447 Titan Relay View
13385377 5 3310 1867 +1443 Titan Relay View
13384220 9 3386 1944 +1442 BloXroute Regulated View
13385441 0 3211 1770 +1441 BloXroute Max Profit View
13386902 4 3288 1847 +1441 BloXroute Regulated View
13382985 1 3221 1789 +1432 Ultra Sound View
13381472 1 3218 1789 +1429 BloXroute Regulated View
13386265 6 3315 1886 +1429 Titan Relay View
13384958 0 3194 1770 +1424 Agnostic Gnosis View
13385548 4 3271 1847 +1424 Ultra Sound View
13386363 7 3327 1906 +1421 Titan Relay View
13382264 5 3288 1867 +1421 BloXroute Regulated View
13381796 4 3268 1847 +1421 BloXroute Regulated View
13383506 7 3326 1906 +1420 BloXroute Regulated View
13384939 5 3286 1867 +1419 BloXroute Regulated View
13387326 9 3362 1944 +1418 BloXroute Regulated View
13386891 8 3342 1925 +1417 BloXroute Regulated View
13383681 5 3283 1867 +1416 BloXroute Max Profit View
13383179 4 3262 1847 +1415 Local View
13383697 1 3202 1789 +1413 BloXroute Regulated View
13386960 11 3396 1983 +1413 BloXroute Regulated View
13385871 7 3317 1906 +1411 BloXroute Regulated View
13385856 11 3389 1983 +1406 Titan Relay View
13388267 6 3291 1886 +1405 Titan Relay View
13386917 4 3250 1847 +1403 BloXroute Max Profit View
13384353 6 3288 1886 +1402 BloXroute Regulated View
13386449 7 3300 1906 +1394 Ultra Sound View
13382297 7 3300 1906 +1394 Ultra Sound View
13383427 0 3163 1770 +1393 BloXroute Regulated View
13387906 2 3198 1808 +1390 Agnostic Gnosis View
13382702 13 3410 2022 +1388 BloXroute Regulated View
13385366 0 3157 1770 +1387 Aestus View
13386994 1 3175 1789 +1386 Aestus View
13386881 6 3271 1886 +1385 Titan Relay View
13381555 7 3290 1906 +1384 BloXroute Regulated View
13381479 7 3288 1906 +1382 BloXroute Regulated View
13385053 6 3268 1886 +1382 Flashbots View
13384017 7 3287 1906 +1381 BloXroute Regulated View
13383927 1 3169 1789 +1380 BloXroute Max Profit View
13383586 1 3168 1789 +1379 Titan Relay View
13383120 9 3323 1944 +1379 BloXroute Max Profit View
13385212 2 3187 1808 +1379 Flashbots View
13381897 0 3148 1770 +1378 Ultra Sound View
13387525 7 3282 1906 +1376 Ultra Sound View
13386258 11 3358 1983 +1375 BloXroute Regulated View
13386158 12 3376 2003 +1373 Ultra Sound View
13382314 0 3134 1770 +1364 BloXroute Regulated View
13381774 5 3231 1867 +1364 BloXroute Regulated View
13381245 9 3307 1944 +1363 BloXroute Max Profit View
13384499 7 3268 1906 +1362 BloXroute Max Profit View
13386577 2 3170 1808 +1362 Agnostic Gnosis View
13386026 0 3131 1770 +1361 BloXroute Max Profit View
13387240 8 3286 1925 +1361 Titan Relay View
13387351 2 3169 1808 +1361 BloXroute Regulated View
13386140 2 3167 1808 +1359 BloXroute Regulated View
13387062 7 3264 1906 +1358 BloXroute Regulated View
13384181 0 3128 1770 +1358 BloXroute Max Profit View
13382889 2 3165 1808 +1357 Ultra Sound View
13382913 8 3276 1925 +1351 BloXroute Regulated View
13383583 9 3295 1944 +1351 Local View
13385170 5 3217 1867 +1350 BloXroute Max Profit View
13385978 1 3139 1789 +1350 Ultra Sound View
13381966 3 3174 1828 +1346 BloXroute Regulated View
13382429 1 3135 1789 +1346 Titan Relay View
13387409 4 3192 1847 +1345 BloXroute Regulated View
13384872 1 3133 1789 +1344 Flashbots View
13382292 7 3249 1906 +1343 BloXroute Max Profit View
13383386 3 3170 1828 +1342 BloXroute Max Profit View
13387179 2 3149 1808 +1341 BloXroute Max Profit View
13384217 6 3226 1886 +1340 Ultra Sound View
13382714 10 3303 1964 +1339 Flashbots View
13386930 6 3225 1886 +1339 Ultra Sound View
13387038 7 3244 1906 +1338 Ultra Sound View
13388128 1 3125 1789 +1336 Titan Relay View
13386540 1 3123 1789 +1334 BloXroute Max Profit View
13387374 4 3181 1847 +1334 Aestus View
13385524 1 3122 1789 +1333 BloXroute Regulated View
13387211 9 3277 1944 +1333 BloXroute Max Profit View
13387299 2 3141 1808 +1333 BloXroute Max Profit View
13385162 3 3159 1828 +1331 Titan Relay View
13388143 4 3178 1847 +1331 Ultra Sound View
13382123 4 3174 1847 +1327 BloXroute Max Profit View
13387653 2 3135 1808 +1327 Ultra Sound View
13382829 8 3251 1925 +1326 BloXroute Regulated View
13386981 3 3153 1828 +1325 Flashbots View
13384546 1 3114 1789 +1325 Ultra Sound View
13384012 12 3327 2003 +1324 BloXroute Max Profit View
13386426 15 3383 2061 +1322 BloXroute Max Profit View
13387779 3 3149 1828 +1321 Flashbots View
13382642 1 3110 1789 +1321 Ultra Sound View
13387686 1 3108 1789 +1319 Local View
13386800 1 3107 1789 +1318 BloXroute Max Profit View
13385570 0 3087 1770 +1317 BloXroute Max Profit View
13385952 10 3281 1964 +1317 Ultra Sound View
13385133 1 3105 1789 +1316 Ultra Sound View
13384358 4 3162 1847 +1315 BloXroute Regulated View
13382179 1 3103 1789 +1314 BloXroute Max Profit View
13381703 6 3200 1886 +1314 BloXroute Max Profit View
13388111 6 3200 1886 +1314 BloXroute Max Profit View
13385147 8 3238 1925 +1313 BloXroute Max Profit View
13382484 1 3102 1789 +1313 Ultra Sound View
13386834 11 3296 1983 +1313 BloXroute Max Profit View
13381645 5 3179 1867 +1312 BloXroute Max Profit View
13383430 1 3100 1789 +1311 BloXroute Regulated View
13385368 6 3197 1886 +1311 Ultra Sound View
13381625 7 3216 1906 +1310 Flashbots View
13387954 1 3099 1789 +1310 Ultra Sound View
13386636 2 3118 1808 +1310 BloXroute Max Profit View
13387665 7 3215 1906 +1309 BloXroute Max Profit View
13386564 9 3253 1944 +1309 Ultra Sound View
13383132 2 3117 1808 +1309 Ultra Sound View
13382253 2 3117 1808 +1309 BloXroute Max Profit View
13382941 2 3116 1808 +1308 BloXroute Max Profit View
13382653 1 3096 1789 +1307 BloXroute Max Profit View
13387444 0 3076 1770 +1306 Ultra Sound View
13384831 2 3114 1808 +1306 BloXroute Max Profit View
13385572 0 3075 1770 +1305 BloXroute Max Profit View
13384996 5 3172 1867 +1305 Ultra Sound View
13383916 11 3288 1983 +1305 Ultra Sound View
13387891 6 3190 1886 +1304 BloXroute Max Profit View
13386989 9 3248 1944 +1304 BloXroute Max Profit View
13386518 1 3092 1789 +1303 BloXroute Max Profit View
13383973 12 3305 2003 +1302 Ultra Sound View
13387972 7 3207 1906 +1301 BloXroute Max Profit View
13384370 1 3088 1789 +1299 Titan Relay View
13387818 6 3185 1886 +1299 Titan Relay View
13386776 2 3107 1808 +1299 Flashbots View
13382132 2 3107 1808 +1299 BloXroute Max Profit View
13384004 6 3184 1886 +1298 Titan Relay View
13385832 6 3183 1886 +1297 BloXroute Max Profit View
13384084 1 3085 1789 +1296 Aestus View
13383421 7 3201 1906 +1295 Titan Relay View
13384676 5 3161 1867 +1294 Ultra Sound View
13383684 0 3062 1770 +1292 Ultra Sound View
13381497 5 3159 1867 +1292 Flashbots View
13381225 7 3197 1906 +1291 BloXroute Max Profit View
13381335 6 3177 1886 +1291 Ultra Sound View
13383572 12 3292 2003 +1289 BloXroute Regulated View
13382269 1 3078 1789 +1289 Aestus View
13383789 12 3291 2003 +1288 BloXroute Max Profit View
13384390 11 3271 1983 +1288 Flashbots View
13386402 3 3114 1828 +1286 Titan Relay View
13384592 2 3093 1808 +1285 BloXroute Regulated View
13385310 0 3054 1770 +1284 Agnostic Gnosis View
13383034 1 3073 1789 +1284 BloXroute Max Profit View
13384556 1 3073 1789 +1284 BloXroute Max Profit View
13383445 10 3247 1964 +1283 Ultra Sound View
13385670 3 3111 1828 +1283 BloXroute Max Profit View
13383905 1 3071 1789 +1282 BloXroute Max Profit View
13386254 4 3129 1847 +1282 BloXroute Max Profit View
13388185 2 3090 1808 +1282 BloXroute Max Profit View
13382483 1 3070 1789 +1281 BloXroute Max Profit View
13388099 14 3322 2041 +1281 BloXroute Max Profit View
13388084 0 3049 1770 +1279 Flashbots View
13381814 1 3068 1789 +1279 BloXroute Max Profit View
13384859 1 3068 1789 +1279 Titan Relay View
13382916 2 3086 1808 +1278 Ultra Sound View
13386970 0 3047 1770 +1277 Ultra Sound View
13383791 1 3066 1789 +1277 Ultra Sound View
13387116 4 3124 1847 +1277 BloXroute Max Profit View
Total anomalies: 246

Anomalies by relay

Which relays have the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_count", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})