Thu, Jan 15, 2026

Propagation anomalies - 2026-01-15

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-15' AND slot_start_date_time < '2026-01-15'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-15' AND slot_start_date_time < '2026-01-15'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-15' AND slot_start_date_time < '2026-01-15'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-15' AND slot_start_date_time < '2026-01-15'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-15' AND slot_start_date_time < '2026-01-15'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-15' AND slot_start_date_time < '2026-01-15'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-15' AND slot_start_date_time < '2026-01-15'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-15' AND slot_start_date_time < '2026-01-15'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,182
MEV blocks: 6,675 (92.9%)
Local blocks: 507 (7.1%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1762.0 + 21.69 × blob_count (R² = 0.019)
Residual σ = 611.4ms
Anomalies (>2σ slow): 289 (4.0%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13471745 0 4479 1762 +2717 everstake Local Local
13470080 7 4283 1914 +2369 upbit Local Local
13472768 0 4082 1762 +2320 upbit Local Local
13470112 0 4003 1762 +2241 upbit Local Local
13470560 0 3982 1762 +2220 Local Local
13474096 0 3798 1762 +2036 Local Local
13471978 0 3689 1762 +1927 0x852b0070... Agnostic Gnosis
13473280 8 3818 1936 +1882 senseinode_lido 0x850b00e0... Flashbots
13471430 5 3746 1870 +1876 revolut 0xb67eaa5e... Titan Relay
13468594 0 3584 1762 +1822 abyss_finance 0xb26f9666... Titan Relay
13472994 0 3583 1762 +1821 blockdaemon 0x850b00e0... BloXroute Regulated
13471975 13 3838 2044 +1794 everstake 0xb26f9666... Titan Relay
13469567 0 3531 1762 +1769 revolut 0x8527d16c... Ultra Sound
13470081 0 3530 1762 +1768 ether.fi Local Local
13471042 1 3550 1784 +1766 figment 0x856b0004... Ultra Sound
13470863 5 3633 1870 +1763 0x88a53ec4... BloXroute Regulated
13473681 9 3712 1957 +1755 whale_0x7c1b 0x8527d16c... Ultra Sound
13471468 5 3618 1870 +1748 0x8527d16c... Ultra Sound
13470165 3 3564 1827 +1737 0x8a850621... Ultra Sound
13473163 9 3667 1957 +1710 0x853b0078... Ultra Sound
13467786 0 3468 1762 +1706 blockdaemon 0x853b0078... Ultra Sound
13468259 14 3754 2066 +1688 blockdaemon 0xb67eaa5e... BloXroute Regulated
13468810 5 3553 1870 +1683 blockdaemon 0xb26f9666... Titan Relay
13469501 0 3429 1762 +1667 binance 0x8a850621... Titan Relay
13471243 6 3558 1892 +1666 blockdaemon 0xb26f9666... Titan Relay
13473401 6 3551 1892 +1659 figment 0x88a53ec4... BloXroute Regulated
13472918 1 3409 1784 +1625 whale_0xdd6c 0x850b00e0... BloXroute Max Profit
13474332 3 3433 1827 +1606 blockdaemon_lido 0x8db2a99d... BloXroute Max Profit
13470312 3 3430 1827 +1603 ether.fi 0xb67eaa5e... EthGas
13474353 1 3385 1784 +1601 blockdaemon 0x8a850621... Titan Relay
13469185 0 3362 1762 +1600 csm_operator342_lido Local Local
13470256 0 3359 1762 +1597 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13469539 2 3395 1805 +1590 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13472625 11 3588 2001 +1587 0x850b00e0... BloXroute Regulated
13470325 10 3564 1979 +1585 whale_0xdd6c 0xac23f8cc... Flashbots
13467778 16 3691 2109 +1582 blockdaemon 0x8527d16c... Ultra Sound
13472006 5 3447 1870 +1577 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13470304 2 3379 1805 +1574 bitstamp 0x8db2a99d... BloXroute Max Profit
13470969 10 3552 1979 +1573 0xb67eaa5e... BloXroute Regulated
13472663 8 3506 1936 +1570 blockdaemon 0x88a53ec4... BloXroute Regulated
13470669 5 3437 1870 +1567 blockdaemon_lido 0x8a850621... BloXroute Regulated
13471517 3 3379 1827 +1552 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13470372 3 3378 1827 +1551 0x8a850621... Titan Relay
13473479 8 3475 1936 +1539 blockdaemon 0x8a850621... Ultra Sound
13471894 11 3539 2001 +1538 blockdaemon_lido 0x88a53ec4... BloXroute Max Profit
13469481 8 3469 1936 +1533 binance 0x8a850621... Titan Relay
13472080 1 3317 1784 +1533 revolut Local Local
13472820 0 3292 1762 +1530 luno 0xb26f9666... Titan Relay
13472297 6 3415 1892 +1523 binance 0x823e0146... BloXroute Max Profit
13470263 6 3411 1892 +1519 Local Local
13467607 18 3671 2152 +1519 0x853b0078... Ultra Sound
13472785 10 3497 1979 +1518 whale_0xdd6c 0x853b0078... Ultra Sound
13471111 3 3344 1827 +1517 blockdaemon 0x82c466b9... BloXroute Regulated
13472133 1 3297 1784 +1513 blockscape_lido Local Local
13473544 0 3275 1762 +1513 blockdaemon 0x850b00e0... BloXroute Regulated
13468649 9 3468 1957 +1511 0x88a53ec4... BloXroute Regulated
13471620 9 3457 1957 +1500 everstake 0x856b0004... Agnostic Gnosis
13471350 0 3257 1762 +1495 blockdaemon_lido 0xb26f9666... Titan Relay
13474746 5 3361 1870 +1491 blockdaemon_lido 0x8527d16c... Ultra Sound
13469420 6 3374 1892 +1482 blockdaemon 0x8527d16c... Ultra Sound
13471584 4 3325 1849 +1476 0x8527d16c... Ultra Sound
13473404 5 3345 1870 +1475 0x853b0078... Ultra Sound
13473421 6 3365 1892 +1473 blockdaemon_lido 0x853b0078... Ultra Sound
13469789 5 3341 1870 +1471 blockdaemon 0x88857150... Ultra Sound
13471498 11 3470 2001 +1469 0x8a850621... Titan Relay
13468668 1 3253 1784 +1469 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13473275 7 3382 1914 +1468 0xb26f9666... Titan Relay
13470880 1 3249 1784 +1465 nethermind_lido 0x8527d16c... Ultra Sound
13467915 0 3225 1762 +1463 blockdaemon 0xb67eaa5e... BloXroute Regulated
13474713 4 3310 1849 +1461 0x88a53ec4... BloXroute Max Profit
13472704 1 3242 1784 +1458 figment 0x8db2a99d... Flashbots
13471760 0 3219 1762 +1457 coinspot 0x852b0070... Aestus
13472474 5 3317 1870 +1447 0x88a53ec4... BloXroute Regulated
13471973 5 3316 1870 +1446 stakingfacilities_lido 0x8527d16c... Ultra Sound
13473596 8 3381 1936 +1445 blockdaemon 0x88a53ec4... BloXroute Regulated
13468521 6 3336 1892 +1444 whale_0xdd6c 0x8527d16c... Ultra Sound
13468677 5 3314 1870 +1444 0x88a53ec4... BloXroute Regulated
13473783 1 3227 1784 +1443 0x88a53ec4... BloXroute Max Profit
13469427 10 3422 1979 +1443 blockdaemon 0x82c466b9... BloXroute Regulated
13469671 6 3333 1892 +1441 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13469198 7 3350 1914 +1436 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13467776 0 3196 1762 +1434 stakefish Local Local
13467736 0 3196 1762 +1434 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13472283 13 3477 2044 +1433 blockdaemon_lido 0xb67eaa5e... Titan Relay
13469147 7 3346 1914 +1432 blockdaemon_lido 0xb26f9666... Titan Relay
13473022 0 3193 1762 +1431 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13470462 5 3301 1870 +1431 revolut 0xb26f9666... Titan Relay
13468894 5 3301 1870 +1431 kelp 0x850b00e0... BloXroute Max Profit
13470841 1 3205 1784 +1421 blockdaemon_lido 0x8527d16c... Ultra Sound
13471201 8 3356 1936 +1420 blockdaemon_lido 0xb67eaa5e... Titan Relay
13474324 8 3355 1936 +1419 blockdaemon_lido 0xb7c5e609... BloXroute Regulated
13468608 11 3417 2001 +1416 bitstamp 0x856b0004... Ultra Sound
13471271 0 3177 1762 +1415 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13472068 4 3263 1849 +1414 0x850b00e0... BloXroute Regulated
13474667 5 3284 1870 +1414 0x88a53ec4... BloXroute Max Profit
13471964 3 3240 1827 +1413 0xb26f9666... Titan Relay
13472069 0 3174 1762 +1412 0x850b00e0... BloXroute Regulated
13471974 3 3239 1827 +1412 solo_stakers 0xb67eaa5e... BloXroute Regulated
13469983 6 3304 1892 +1412 0xb26f9666... Titan Relay
13474493 0 3173 1762 +1411 0x8a850621... Ultra Sound
13473313 5 3281 1870 +1411 solo_stakers 0x88857150... Ultra Sound
13471966 7 3324 1914 +1410 ether.fi 0xb67eaa5e... EthGas
13469984 0 3169 1762 +1407 stakefish Local Local
13470333 4 3254 1849 +1405 revolut 0xb26f9666... Titan Relay
13472551 3 3227 1827 +1400 blockdaemon 0xb26f9666... Titan Relay
13473966 10 3376 1979 +1397 0x850b00e0... BloXroute Regulated
13471798 14 3458 2066 +1392 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13468460 9 3347 1957 +1390 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13472077 8 3321 1936 +1385 0x91b123d8... BloXroute Regulated
13467691 3 3211 1827 +1384 0x8527d16c... Ultra Sound
13472448 8 3316 1936 +1380 blockscape_lido 0x8527d16c... Ultra Sound
13471749 12 3402 2022 +1380 ether.fi 0x853b0078... BloXroute Max Profit
13471399 0 3140 1762 +1378 0x850b00e0... BloXroute Regulated
13467699 5 3248 1870 +1378 whale_0x4685 0xb7c5e609... BloXroute Max Profit
13467875 6 3269 1892 +1377 blockdaemon_lido 0x853b0078... Ultra Sound
13467603 5 3246 1870 +1376 everstake 0x88a53ec4... BloXroute Max Profit
13472881 7 3289 1914 +1375 p2porg 0x850b00e0... BloXroute Regulated
13470117 11 3373 2001 +1372 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13472995 0 3133 1762 +1371 0xb67eaa5e... BloXroute Regulated
13467599 0 3131 1762 +1369 0xb26f9666... BloXroute Max Profit
13472260 7 3281 1914 +1367 0xb26f9666... BloXroute Regulated
13473960 6 3257 1892 +1365 bitstamp 0x8527d16c... Ultra Sound
13474021 5 3235 1870 +1365 0xb7c5e609... BloXroute Max Profit
13468768 0 3124 1762 +1362 everstake 0x853b0078... BloXroute Max Profit
13473891 0 3124 1762 +1362 0x88a53ec4... BloXroute Regulated
13468260 3 3183 1827 +1356 gateway.fmas_lido 0xac23f8cc... BloXroute Max Profit
13469159 1 3135 1784 +1351 0x88a53ec4... BloXroute Max Profit
13474082 6 3241 1892 +1349 figment 0x823e0146... Flashbots
13472794 0 3109 1762 +1347 p2porg 0x88a53ec4... BloXroute Max Profit
13469357 3 3171 1827 +1344 ether.fi 0x823e0146... Flashbots
13474380 0 3105 1762 +1343 blockdaemon 0x91a8729e... Ultra Sound
13467920 3 3170 1827 +1343 p2porg 0xb26f9666... BloXroute Max Profit
13470649 5 3213 1870 +1343 bitstamp 0xac23f8cc... BloXroute Max Profit
13467700 1 3126 1784 +1342 0xb67eaa5e... BloXroute Regulated
13469857 6 3234 1892 +1342 blockdaemon_lido 0x8527d16c... Ultra Sound
13468439 0 3102 1762 +1340 0x850b00e0... BloXroute Regulated
13469836 2 3143 1805 +1338 kelp 0x8527d16c... Ultra Sound
13474687 0 3099 1762 +1337 everstake 0x8527d16c... Ultra Sound
13474779 6 3228 1892 +1336 0xb26f9666... BloXroute Max Profit
13470869 8 3271 1936 +1335 p2porg 0x8527d16c... Ultra Sound
13469972 0 3097 1762 +1335 0xac23f8cc... Flashbots
13471128 2 3140 1805 +1335 0x91b123d8... BloXroute Regulated
13473835 0 3096 1762 +1334 0x91a8729e... BloXroute Max Profit
13470883 0 3095 1762 +1333 p2porg 0x8527d16c... Ultra Sound
13471476 0 3095 1762 +1333 blockscape_lido 0x8db2a99d... Ultra Sound
13469273 1 3113 1784 +1329 figment 0x8527d16c... Ultra Sound
13471848 0 3091 1762 +1329 0x8527d16c... Ultra Sound
13472567 1 3112 1784 +1328 p2porg 0x8527d16c... Ultra Sound
13474715 6 3220 1892 +1328 0x855b00e6... BloXroute Max Profit
13472751 12 3349 2022 +1327 blockdaemon_lido 0xb26f9666... Titan Relay
13474105 1 3110 1784 +1326 everstake 0x8527d16c... Ultra Sound
13470551 1 3109 1784 +1325 p2porg 0x88a53ec4... BloXroute Max Profit
13470773 0 3085 1762 +1323 everstake 0x823e0146... Flashbots
13472545 0 3085 1762 +1323 p2porg 0x8db2a99d... BloXroute Max Profit
13474290 10 3301 1979 +1322 0xb67eaa5e... BloXroute Regulated
13471269 1 3104 1784 +1320 0x853b0078... Ultra Sound
13470601 4 3169 1849 +1320 figment 0x8527d16c... Ultra Sound
13473414 0 3081 1762 +1319 figment 0x823e0146... BloXroute Max Profit
13468585 1 3100 1784 +1316 everstake 0x8527d16c... Ultra Sound
13472385 0 3078 1762 +1316 0x8a850621... Titan Relay
13473982 1 3099 1784 +1315 0x8527d16c... Ultra Sound
13467765 0 3077 1762 +1315 0x8527d16c... Ultra Sound
13468170 3 3141 1827 +1314 p2porg 0xb7c5e609... BloXroute Max Profit
13470007 5 3183 1870 +1313 p2porg 0x853b0078... Titan Relay
13469493 1 3094 1784 +1310 p2porg 0xb26f9666... BloXroute Max Profit
13470281 0 3072 1762 +1310 0x88857150... Ultra Sound
13471663 3 3137 1827 +1310 p2porg 0x8527d16c... Ultra Sound
13471836 11 3310 2001 +1309 kraken 0xb26f9666... Titan Relay
13474486 9 3266 1957 +1309 figment 0x8527d16c... Ultra Sound
13470657 2 3114 1805 +1309 p2porg 0x8527d16c... Ultra Sound
13469376 5 3179 1870 +1309 kelp 0xb67eaa5e... BloXroute Regulated
13469296 3 3135 1827 +1308 p2porg 0x853b0078... Aestus
13473156 5 3178 1870 +1308 p2porg 0xb26f9666... BloXroute Max Profit
13470156 0 3069 1762 +1307 0x8527d16c... Ultra Sound
13469888 19 3481 2174 +1307 stakingfacilities_lido 0x8527d16c... Ultra Sound
13470087 1 3090 1784 +1306 ether.fi 0x8527d16c... Ultra Sound
13469369 1 3089 1784 +1305 nodeset Local Local
13468464 4 3154 1849 +1305 0xb26f9666... Aestus
13470834 0 3067 1762 +1305 gateway.fmas_lido 0x88a53ec4... BloXroute Max Profit
13474793 0 3065 1762 +1303 p2porg 0x853b0078... Flashbots
13474474 0 3064 1762 +1302 0xac23f8cc... Flashbots
13474336 0 3064 1762 +1302 ether.fi 0xb26f9666... BloXroute Regulated
13469382 3 3127 1827 +1300 p2porg 0x8db2a99d... Flashbots
13474505 6 3191 1892 +1299 p2porg 0x853b0078... Agnostic Gnosis
13468529 5 3169 1870 +1299 bitstamp 0xb67eaa5e... BloXroute Max Profit
13469136 3 3125 1827 +1298 0xb7c5e609... BloXroute Max Profit
13470985 0 3059 1762 +1297 gateway.fmas_lido 0x8527d16c... Ultra Sound
13473811 0 3059 1762 +1297 0x823e0146... BloXroute Max Profit
13473185 0 3058 1762 +1296 p2porg 0x823e0146... Flashbots
13470861 0 3058 1762 +1296 everstake 0x91a8729e... BloXroute Max Profit
13470668 5 3166 1870 +1296 0xb67eaa5e... BloXroute Max Profit
13468958 4 3144 1849 +1295 mantle 0xac23f8cc... BloXroute Max Profit
13468288 9 3252 1957 +1295 0x850b00e0... BloXroute Max Profit
13468324 0 3056 1762 +1294 0x8db2a99d... Flashbots
13474001 5 3164 1870 +1294 0x88a53ec4... BloXroute Max Profit
13471557 13 3337 2044 +1293 blockdaemon 0xb26f9666... Titan Relay
13470852 5 3163 1870 +1293 figment 0x850b00e0... BloXroute Max Profit
13474018 1 3073 1784 +1289 0xac23f8cc... BloXroute Max Profit
13470948 0 3051 1762 +1289 kelp 0xb26f9666... Titan Relay
13467682 8 3224 1936 +1288 kelp 0x88a53ec4... BloXroute Regulated
13473653 1 3071 1784 +1287 gateway.fmas_lido 0x856b0004... Ultra Sound
13474172 0 3049 1762 +1287 0xb26f9666... Titan Relay
13473317 14 3352 2066 +1286 0x91b123d8... BloXroute Regulated
13468046 12 3308 2022 +1286 revolut 0x8527d16c... Ultra Sound
13470928 11 3286 2001 +1285 p2porg 0x856b0004... Aestus
13469495 1 3068 1784 +1284 0xb7c5e609... Flashbots
13471407 2 3089 1805 +1284 gateway.fmas_lido 0x8db2a99d... BloXroute Max Profit
13472484 11 3284 2001 +1283 everstake 0x88a53ec4... BloXroute Max Profit
13469364 1 3067 1784 +1283 ether.fi 0xb26f9666... Titan Relay
13474079 0 3045 1762 +1283 0x853b0078... BloXroute Max Profit
13469355 7 3196 1914 +1282 blockscape_lido 0xb67eaa5e... BloXroute Max Profit
13469326 0 3044 1762 +1282 whale_0x7791 0x88a53ec4... BloXroute Max Profit
13469442 0 3044 1762 +1282 kelp 0x852b0070... Aestus
13468343 1 3065 1784 +1281 blockscape_lido 0x853b0078... Ultra Sound
13468240 0 3043 1762 +1281 gateway.fmas_lido 0xb7c5e609... BloXroute Max Profit
13470900 5 3151 1870 +1281 0xb26f9666... BloXroute Regulated
13473126 12 3302 2022 +1280 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13469669 5 3149 1870 +1279 0x8527d16c... Ultra Sound
13470292 1 3062 1784 +1278 p2porg 0xb26f9666... BloXroute Max Profit
13468367 4 3126 1849 +1277 0xb67eaa5e... BloXroute Regulated
13469765 0 3038 1762 +1276 p2porg 0x805e28e6... BloXroute Max Profit
13470042 5 3146 1870 +1276 mantle 0x8527d16c... Ultra Sound
13467794 5 3145 1870 +1275 p2porg 0x853b0078... Aestus
13468571 0 3036 1762 +1274 0xb26f9666... BloXroute Max Profit
13472141 3 3101 1827 +1274 gateway.fmas_lido 0x8527d16c... Ultra Sound
13472637 5 3143 1870 +1273 0x850b00e0... BloXroute Max Profit
13474501 6 3163 1892 +1271 ether.fi 0xb67eaa5e... EthGas
13467780 8 3206 1936 +1270 everstake 0x8527d16c... Ultra Sound
13470140 2 3075 1805 +1270 everstake 0xb26f9666... Titan Relay
13472721 11 3270 2001 +1269 p2porg 0x853b0078... Ultra Sound
13470162 4 3117 1849 +1268 0xb26f9666... BloXroute Max Profit
13471305 2 3073 1805 +1268 gateway.fmas_lido 0x8527d16c... Ultra Sound
13468130 7 3181 1914 +1267 gateway.fmas_lido 0x8527d16c... Ultra Sound
13469896 15 3354 2087 +1267 blockdaemon_lido 0xb26f9666... Titan Relay
13472885 3 3091 1827 +1264 0xb26f9666... BloXroute Max Profit
13470388 5 3134 1870 +1264 0xac23f8cc... BloXroute Max Profit
13470829 1 3047 1784 +1263 0x856b0004... Ultra Sound
13471688 0 3025 1762 +1263 0xb7c5e609... BloXroute Max Profit
13467878 3 3090 1827 +1263 everstake 0xb26f9666... BloXroute Max Profit
13473633 3 3089 1827 +1262 ether.fi 0x8527d16c... Ultra Sound
13468913 6 3154 1892 +1262 0x856b0004... Ultra Sound
13469393 1 3045 1784 +1261 0xb26f9666... BloXroute Max Profit
13472566 5 3131 1870 +1261 0x8527d16c... Ultra Sound
13469702 0 3021 1762 +1259 ether.fi 0x823e0146... Flashbots
13468426 0 3020 1762 +1258 gateway.fmas_lido 0x8527d16c... Ultra Sound
13473182 5 3127 1870 +1257 p2porg 0x8527d16c... Ultra Sound
13472866 13 3300 2044 +1256 stakingfacilities_lido 0x823e0146... BloXroute Max Profit
13473413 3 3083 1827 +1256 0xb26f9666... BloXroute Regulated
13473794 1 3039 1784 +1255 0x850b00e0... BloXroute Regulated
13474539 4 3104 1849 +1255 whale_0x4685 0xac23f8cc... Flashbots
13468142 1 3038 1784 +1254 0x88a53ec4... BloXroute Max Profit
13473110 7 3168 1914 +1254 everstake 0xb7c5e609... BloXroute Max Profit
13469329 3 3081 1827 +1254 ether.fi 0xb26f9666... Titan Relay
13474029 2 3059 1805 +1254 0xb26f9666... BloXroute Max Profit
13469178 3 3080 1827 +1253 mantle 0x88857150... Ultra Sound
13472301 8 3188 1936 +1252 0xb67eaa5e... BloXroute Max Profit
13474061 0 3013 1762 +1251 0x88a53ec4... BloXroute Regulated
13469431 9 3207 1957 +1250 p2porg 0x853b0078... Ultra Sound
13468225 8 3185 1936 +1249 stakingfacilities_lido 0x88857150... Ultra Sound
13474230 3 3076 1827 +1249 everstake 0xb67eaa5e... BloXroute Regulated
13474092 1 3032 1784 +1248 0xb67eaa5e... BloXroute Max Profit
13471266 0 3010 1762 +1248 0x91a8729e... BloXroute Max Profit
13474627 9 3205 1957 +1248 bitstamp 0x8527d16c... Ultra Sound
13469177 6 3135 1892 +1243 everstake 0x853b0078... Aestus
13469703 6 3135 1892 +1243 mantle 0x88857150... Ultra Sound
13467858 1 3026 1784 +1242 0x856b0004... Agnostic Gnosis
13468264 6 3134 1892 +1242 0x850b00e0... Flashbots
13467750 5 3111 1870 +1241 blockscape_lido 0x8db2a99d... Ultra Sound
13468258 1 3023 1784 +1239 0x856b0004... Agnostic Gnosis
13469458 0 3001 1762 +1239 0x823e0146... Flashbots
13471356 0 2999 1762 +1237 0x8527d16c... Ultra Sound
13472972 4 3085 1849 +1236 p2porg 0xb26f9666... BloXroute Max Profit
13467922 3 3063 1827 +1236 kelp 0xb26f9666... Titan Relay
13471324 6 3127 1892 +1235 whale_0x4685 0x823e0146... Flashbots
13470596 4 3083 1849 +1234 whale_0x3b9e 0xb26f9666... Titan Relay
13473362 6 3126 1892 +1234 ether.fi 0x8527d16c... Ultra Sound
13472402 5 3104 1870 +1234 0xb7c5e609... BloXroute Max Profit
13470775 8 3169 1936 +1233 0x8527d16c... Ultra Sound
13471508 0 2995 1762 +1233 everstake 0x823e0146... Flashbots
13474356 6 3125 1892 +1233 0x853b0078... Flashbots
13472300 0 2993 1762 +1231 0x91a8729e... BloXroute Max Profit
13474445 6 3122 1892 +1230 0x8db2a99d... Flashbots
13471822 6 3121 1892 +1229 everstake 0xb26f9666... Titan Relay
13472098 6 3121 1892 +1229 0xb7c5e609... BloXroute Max Profit
13471660 8 3163 1936 +1227 everstake 0x8527d16c... Ultra Sound
13470420 1 3011 1784 +1227 0x856b0004... Agnostic Gnosis
13474206 3 3054 1827 +1227 0x8db2a99d... BloXroute Max Profit
13473435 6 3117 1892 +1225 0x8527d16c... Ultra Sound
13467861 2 3029 1805 +1224 0xb67eaa5e... BloXroute Max Profit
Total anomalies: 289

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})