Fri, Jan 16, 2026

Propagation anomalies - 2026-01-16

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-16' AND slot_start_date_time < '2026-01-16'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-16' AND slot_start_date_time < '2026-01-16'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-16' AND slot_start_date_time < '2026-01-16'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-16' AND slot_start_date_time < '2026-01-16'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-16' AND slot_start_date_time < '2026-01-16'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-16' AND slot_start_date_time < '2026-01-16'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-16' AND slot_start_date_time < '2026-01-16'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-16' AND slot_start_date_time < '2026-01-16'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,189
MEV blocks: 6,666 (92.7%)
Local blocks: 523 (7.3%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1794.4 + 17.41 × blob_count (R² = 0.011)
Residual σ = 633.2ms
Anomalies (>2σ slow): 272 (3.8%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13481026 0 8188 1794 +6394 csm_operator9_lido Local Local
13478048 4 5482 1864 +3618 Local Local
13479800 0 4469 1794 +2675 ether.fi 0xb26f9666... EthGas
13481509 0 4236 1794 +2442 Local Local
13479785 0 4010 1794 +2216 binance Local Local
13477728 0 3970 1794 +2176 Local Local
13479456 0 3965 1794 +2171 rocketpool Local Local
13474942 0 3933 1794 +2139 abyss_finance Local Local
13480576 0 3885 1794 +2091 Local Local
13477408 0 3883 1794 +2089 0x855b00e6... BloXroute Max Profit
13481558 8 3887 1934 +1953 0x850b00e0... BloXroute Max Profit
13477475 5 3822 1881 +1941 0xb26f9666... EthGas
13475377 3 3723 1847 +1876 0xb26f9666... Titan Relay
13477061 3 3671 1847 +1824 0xb67eaa5e... BloXroute Regulated
13478613 2 3644 1829 +1815 revolut 0xb67eaa5e... Titan Relay
13478328 1 3622 1812 +1810 0x8527d16c... Ultra Sound
13476656 0 3602 1794 +1808 0xb67eaa5e... Titan Relay
13475994 3 3651 1847 +1804 ether.fi 0x853b0078... BloXroute Max Profit
13479332 5 3679 1881 +1798 0xb26f9666... Titan Relay
13478310 0 3582 1794 +1788 blockdaemon 0x88a53ec4... BloXroute Regulated
13479274 6 3669 1899 +1770 0x88a53ec4... BloXroute Regulated
13475819 1 3581 1812 +1769 revolut 0xb67eaa5e... Titan Relay
13479285 4 3620 1864 +1756 ether.fi 0xb67eaa5e... Titan Relay
13476197 3 3590 1847 +1743 0x8527d16c... Ultra Sound
13478296 6 3637 1899 +1738 0xb26f9666... Titan Relay
13478864 0 3527 1794 +1733 p2porg 0xb26f9666... Titan Relay
13475427 1 3544 1812 +1732 binance 0x8a850621... Ultra Sound
13479799 6 3630 1899 +1731 whale_0x7669 0x8a850621... Ultra Sound
13479729 5 3607 1881 +1726 0x853b0078... Ultra Sound
13478926 3 3564 1847 +1717 liquid_collective 0x853b0078... Ultra Sound
13477616 3 3555 1847 +1708 blockdaemon 0xb26f9666... Titan Relay
13481122 4 3570 1864 +1706 revolut 0x8527d16c... Ultra Sound
13479596 2 3532 1829 +1703 0x8db2a99d... Ultra Sound
13475857 0 3497 1794 +1703 figment 0x91a8729e... BloXroute Regulated
13476563 6 3595 1899 +1696 0xb67eaa5e... Titan Relay
13477670 1 3498 1812 +1686 blockdaemon 0x8527d16c... Ultra Sound
13477981 0 3477 1794 +1683 binance 0x8a850621... Ultra Sound
13479268 7 3591 1916 +1675 0x8527d16c... Ultra Sound
13477808 5 3548 1881 +1667 figment 0x850b00e0... BloXroute Regulated
13481497 4 3523 1864 +1659 binance 0x8a850621... Titan Relay
13480712 2 3479 1829 +1650 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13476591 8 3577 1934 +1643 figment 0xb67eaa5e... BloXroute Regulated
13475876 1 3454 1812 +1642 blockdaemon 0x855b00e6... Ultra Sound
13478721 4 3504 1864 +1640 whale_0xdd6c 0xac23f8cc... Flashbots
13480563 6 3534 1899 +1635 blockdaemon 0x88510a78... BloXroute Regulated
13478713 14 3672 2038 +1634 revolut 0xb67eaa5e... Titan Relay
13476652 3 3473 1847 +1626 blockdaemon_lido 0xb67eaa5e... Titan Relay
13481194 17 3716 2090 +1626 p2porg 0xb26f9666... BloXroute Regulated
13477900 11 3609 1986 +1623 0xb26f9666... BloXroute Regulated
13480100 10 3591 1968 +1623 revolut 0x8527d16c... Ultra Sound
13476180 3 3462 1847 +1615 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13480167 4 3475 1864 +1611 ether.fi 0x8527d16c... Ultra Sound
13475500 0 3403 1794 +1609 whale_0xdd6c 0xb26f9666... Titan Relay
13481186 1 3420 1812 +1608 ether.fi 0x853b0078... BloXroute Max Profit
13477641 1 3418 1812 +1606 ether.fi 0xb26f9666... Titan Relay
13476577 11 3579 1986 +1593 binance 0x8db2a99d... BloXroute Max Profit
13476166 5 3468 1881 +1587 blockdaemon 0x8a850621... Ultra Sound
13480602 0 3379 1794 +1585 0x88857150... Ultra Sound
13481700 8 3514 1934 +1580 0x8a850621... Titan Relay
13479184 0 3372 1794 +1578 blockdaemon_lido 0xb211df49... Ultra Sound
13475671 9 3527 1951 +1576 blockdaemon 0x8527d16c... Ultra Sound
13480409 4 3434 1864 +1570 blockdaemon_lido 0x88a53ec4... BloXroute Max Profit
13475286 5 3446 1881 +1565 0x8a850621... Ultra Sound
13480191 9 3515 1951 +1564 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13475741 0 3356 1794 +1562 binance 0x8db2a99d... Flashbots
13479602 0 3354 1794 +1560 luno 0x850b00e0... BloXroute Regulated
13477395 1 3371 1812 +1559 ether.fi 0x853b0078... Aestus
13479954 3 3396 1847 +1549 blockdaemon 0x850b00e0... BloXroute Regulated
13476988 0 3337 1794 +1543 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13477031 6 3439 1899 +1540 blockdaemon 0x857b0038... Ultra Sound
13474937 3 3385 1847 +1538 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13475827 5 3418 1881 +1537 blockdaemon 0x82c466b9... BloXroute Regulated
13474878 5 3416 1881 +1535 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13479078 3 3377 1847 +1530 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13477524 6 3429 1899 +1530 0x823e0146... BloXroute Max Profit
13476426 0 3320 1794 +1526 blockdaemon 0xb67eaa5e... BloXroute Regulated
13475412 5 3401 1881 +1520 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13476725 6 3417 1899 +1518 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13481979 6 3417 1899 +1518 ether.fi 0x853b0078... Agnostic Gnosis
13474851 7 3432 1916 +1516 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13479038 1 3325 1812 +1513 blockdaemon 0x850b00e0... BloXroute Regulated
13479544 4 3375 1864 +1511 0x8a850621... BloXroute Max Profit
13479689 3 3357 1847 +1510 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13481339 5 3391 1881 +1510 blockdaemon 0xb67eaa5e... BloXroute Regulated
13475467 9 3460 1951 +1509 blockdaemon_lido 0x88857150... Ultra Sound
13480393 5 3375 1881 +1494 0x88a53ec4... BloXroute Regulated
13481587 0 3285 1794 +1491 blockdaemon 0xb26f9666... Titan Relay
13480623 3 3334 1847 +1487 0x850b00e0... BloXroute Regulated
13476707 6 3379 1899 +1480 ether.fi 0x8527d16c... Ultra Sound
13477761 0 3273 1794 +1479 luno 0x91a8729e... BloXroute Regulated
13480979 5 3360 1881 +1479 0x850b00e0... BloXroute Regulated
13476161 2 3306 1829 +1477 everstake 0x853b0078... Agnostic Gnosis
13477020 0 3270 1794 +1476 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13478027 0 3269 1794 +1475 blockdaemon_lido 0xb26f9666... Titan Relay
13476437 0 3267 1794 +1473 blockdaemon 0xb26f9666... Titan Relay
13481788 6 3371 1899 +1472 0xb26f9666... Titan Relay
13475168 6 3369 1899 +1470 gateway.fmas_lido 0x853b0078... Ultra Sound
13478485 0 3264 1794 +1470 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13479678 5 3351 1881 +1470 blockdaemon_lido 0xb67eaa5e... Titan Relay
13475856 0 3262 1794 +1468 blockdaemon 0x852b0070... Ultra Sound
13475256 1 3279 1812 +1467 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13481770 9 3418 1951 +1467 blockdaemon 0x850b00e0... BloXroute Regulated
13477250 6 3365 1899 +1466 luno 0x853b0078... Ultra Sound
13478925 6 3363 1899 +1464 whale_0xdd6c 0x88a53ec4... BloXroute Max Profit
13478645 4 3326 1864 +1462 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13479088 0 3250 1794 +1456 blockdaemon 0xb7c5e609... BloXroute Regulated
13479837 9 3403 1951 +1452 ether.fi 0xb26f9666... Titan Relay
13475931 6 3350 1899 +1451 blockdaemon 0xb67eaa5e... Titan Relay
13478951 1 3261 1812 +1449 0x855b00e6... BloXroute Max Profit
13479371 0 3241 1794 +1447 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13478426 0 3240 1794 +1446 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13475796 5 3326 1881 +1445 0x850b00e0... BloXroute Regulated
13477542 3 3287 1847 +1440 revolut 0xb67eaa5e... BloXroute Regulated
13479769 4 3304 1864 +1440 luno 0x8527d16c... Ultra Sound
13479904 10 3408 1968 +1440 solo_stakers 0xb7c5e609... BloXroute Max Profit
13480417 6 3337 1899 +1438 blockdaemon 0x853b0078... Ultra Sound
13481914 4 3298 1864 +1434 blockdaemon_lido 0x91b123d8... BloXroute Regulated
13475413 0 3227 1794 +1433 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13481704 5 3314 1881 +1433 ether.fi 0x8527d16c... Ultra Sound
13481947 6 3328 1899 +1429 0xb67eaa5e... BloXroute Max Profit
13477028 10 3397 1968 +1429 ether.fi 0xb26f9666... Titan Relay
13479396 7 3341 1916 +1425 0x850b00e0... BloXroute Regulated
13481609 0 3219 1794 +1425 blockdaemon 0xb67eaa5e... BloXroute Regulated
13475631 8 3356 1934 +1422 p2porg 0x853b0078... Aestus
13477002 0 3216 1794 +1422 0x88857150... Ultra Sound
13478166 3 3268 1847 +1421 blockdaemon 0x88a53ec4... BloXroute Regulated
13479804 0 3215 1794 +1421 0x8527d16c... Ultra Sound
13478149 3 3263 1847 +1416 everstake 0x853b0078... BloXroute Max Profit
13474912 0 3209 1794 +1415 figment 0x88857150... Ultra Sound
13474943 1 3225 1812 +1413 0x96b5d4d9... EthGas
13480840 0 3207 1794 +1413 revolut 0xb26f9666... Titan Relay
13479201 13 3433 2021 +1412 0x857b0038... Ultra Sound
13479241 8 3343 1934 +1409 luno 0x8527d16c... Ultra Sound
13477003 11 3392 1986 +1406 bitstamp 0x8527d16c... Ultra Sound
13477173 6 3304 1899 +1405 blockdaemon 0x853b0078... Ultra Sound
13481869 5 3286 1881 +1405 0x850b00e0... BloXroute Max Profit
13479287 4 3263 1864 +1399 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13476290 6 3297 1899 +1398 0x850b00e0... BloXroute Max Profit
13481058 0 3191 1794 +1397 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13480160 3 3238 1847 +1391 ether.fi 0xb7c5e609... BloXroute Max Profit
13476892 0 3185 1794 +1391 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13479502 8 3323 1934 +1389 0x850b00e0... BloXroute Regulated
13476031 6 3287 1899 +1388 0x88a53ec4... BloXroute Regulated
13476260 5 3269 1881 +1388 blockdaemon 0xb67eaa5e... Ultra Sound
13477460 8 3320 1934 +1386 p2porg 0x8527d16c... Ultra Sound
13481898 0 3179 1794 +1385 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13475163 9 3334 1951 +1383 0xb26f9666... Titan Relay
13479781 0 3174 1794 +1380 stakingfacilities_lido 0x8527d16c... Ultra Sound
13480268 8 3313 1934 +1379 blockdaemon_lido 0x91b123d8... BloXroute Regulated
13481200 6 3275 1899 +1376 ether.fi 0xb67eaa5e... EthGas
13481323 6 3270 1899 +1371 0x82c466b9... BloXroute Regulated
13481473 1 3181 1812 +1369 0x853b0078... Agnostic Gnosis
13480788 3 3214 1847 +1367 gateway.fmas_lido 0x823e0146... BloXroute Max Profit
13478821 6 3265 1899 +1366 0x82c466b9... Flashbots
13479754 9 3316 1951 +1365 0x850b00e0... BloXroute Regulated
13478259 1 3176 1812 +1364 blockdaemon_lido 0x8527d16c... Ultra Sound
13479229 10 3332 1968 +1364 blockdaemon_lido 0x88857150... Ultra Sound
13475233 8 3297 1934 +1363 0x850b00e0... BloXroute Regulated
13480447 13 3383 2021 +1362 0x8527d16c... Ultra Sound
13480865 1 3174 1812 +1362 0x850b00e0... BloXroute Regulated
13481107 9 3311 1951 +1360 0x88a53ec4... BloXroute Regulated
13475093 1 3169 1812 +1357 gateway.fmas_lido 0x853b0078... Ultra Sound
13480495 0 3148 1794 +1354 0x850b00e0... Ultra Sound
13477758 5 3235 1881 +1354 everstake 0x8db2a99d... BloXroute Max Profit
13480005 0 3147 1794 +1353 blockdaemon_lido 0xb26f9666... Titan Relay
13480608 1 3164 1812 +1352 0x88a53ec4... BloXroute Max Profit
13474946 1 3162 1812 +1350 p2porg 0x8527d16c... Ultra Sound
13476551 3 3196 1847 +1349 0xb67eaa5e... BloXroute Max Profit
13480992 5 3230 1881 +1349 0xb67eaa5e... Titan Relay
13477617 2 3174 1829 +1345 ether.fi 0xb26f9666... Titan Relay
13475127 5 3226 1881 +1345 0xb26f9666... Titan Relay
13476463 5 3222 1881 +1341 0xb67eaa5e... BloXroute Max Profit
13477041 2 3167 1829 +1338 everstake 0xb67eaa5e... BloXroute Regulated
13476614 0 3132 1794 +1338 everstake 0xb26f9666... Titan Relay
13476339 11 3322 1986 +1336 p2porg 0xb67eaa5e... BloXroute Max Profit
13476458 0 3129 1794 +1335 blockscape_lido 0x853b0078... Ultra Sound
13476603 9 3284 1951 +1333 p2porg 0x88a53ec4... BloXroute Regulated
13477920 0 3125 1794 +1331 everstake 0xb26f9666... Titan Relay
13477198 8 3263 1934 +1329 0x855b00e6... BloXroute Max Profit
13480487 1 3141 1812 +1329 0x8527d16c... Ultra Sound
13480558 2 3158 1829 +1329 p2porg 0x853b0078... BloXroute Max Profit
13480860 8 3261 1934 +1327 0x856b0004... Aestus
13480667 9 3278 1951 +1327 whale_0x7791 0xac23f8cc... BloXroute Max Profit
13481938 3 3173 1847 +1326 0x856b0004... Aestus
13476597 1 3138 1812 +1326 blockscape_lido 0x8527d16c... Ultra Sound
13478985 6 3225 1899 +1326 0xb26f9666... BloXroute Regulated
13475430 11 3312 1986 +1326 0x88a53ec4... BloXroute Max Profit
13481421 0 3120 1794 +1326 0x88a53ec4... BloXroute Regulated
13478402 15 3381 2056 +1325 0x8db2a99d... BloXroute Max Profit
13479181 5 3206 1881 +1325 0x8527d16c... Ultra Sound
13479814 5 3206 1881 +1325 nethermind_lido 0x850b00e0... BloXroute Max Profit
13477172 0 3118 1794 +1324 0x91a8729e... BloXroute Regulated
13478819 2 3152 1829 +1323 0xb7c5e609... BloXroute Max Profit
13476004 3 3168 1847 +1321 0x860d4173... BloXroute Max Profit
13477050 5 3202 1881 +1321 everstake 0xb67eaa5e... BloXroute Regulated
13480187 6 3219 1899 +1320 ether.fi 0x8527d16c... Ultra Sound
13478172 0 3114 1794 +1320 0x8527d16c... Ultra Sound
13480018 5 3201 1881 +1320 0x855b00e6... Flashbots
13478714 0 3113 1794 +1319 p2porg 0xb67eaa5e... BloXroute Max Profit
13478797 0 3111 1794 +1317 p2porg 0xb67eaa5e... BloXroute Regulated
13475393 5 3197 1881 +1316 stakingfacilities_lido 0x8db2a99d... BloXroute Max Profit
13475847 1 3127 1812 +1315 ether.fi 0x8db2a99d... Flashbots
13477723 5 3195 1881 +1314 p2porg 0xb26f9666... BloXroute Regulated
13479239 3 3160 1847 +1313 0xb67eaa5e... BloXroute Max Profit
13475332 5 3194 1881 +1313 0xb67eaa5e... BloXroute Max Profit
13475655 5 3194 1881 +1313 figment 0x8527d16c... Ultra Sound
13480457 8 3244 1934 +1310 everstake 0xb67eaa5e... BloXroute Regulated
13476457 0 3103 1794 +1309 ether.fi 0x860d4173... BloXroute Max Profit
13476497 5 3190 1881 +1309 0x856b0004... Ultra Sound
13478967 2 3137 1829 +1308 bitstamp 0x8527d16c... Ultra Sound
13476594 0 3101 1794 +1307 0x853b0078... Aestus
13479664 3 3151 1847 +1304 everstake 0x8527d16c... Ultra Sound
13477756 3 3151 1847 +1304 p2porg 0x8527d16c... Ultra Sound
13479860 0 3097 1794 +1303 0x8527d16c... Ultra Sound
13478611 1 3114 1812 +1302 0x856b0004... Aestus
13479003 4 3160 1864 +1296 0xb26f9666... BloXroute Regulated
13480768 0 3089 1794 +1295 everstake 0x853b0078... Aestus
13476700 6 3193 1899 +1294 0x8db2a99d... BloXroute Max Profit
13478117 4 3158 1864 +1294 p2porg 0x853b0078... Titan Relay
13478850 9 3245 1951 +1294 everstake 0x8527d16c... Ultra Sound
13479455 0 3088 1794 +1294 figment 0xb26f9666... Titan Relay
13475209 3 3140 1847 +1293 everstake 0x853b0078... BloXroute Max Profit
13481965 3 3140 1847 +1293 p2porg 0x8527d16c... Ultra Sound
13478500 5 3174 1881 +1293 everstake 0x853b0078... BloXroute Max Profit
13478755 5 3174 1881 +1293 0x850b00e0... BloXroute Regulated
13476340 3 3139 1847 +1292 figment 0xb26f9666... Titan Relay
13477342 5 3173 1881 +1292 p2porg 0x8527d16c... Ultra Sound
13476369 2 3120 1829 +1291 ether.fi 0x8527d16c... Ultra Sound
13476099 1 3102 1812 +1290 0xb7c5e609... BloXroute Max Profit
13476001 5 3170 1881 +1289 everstake 0x88a53ec4... BloXroute Max Profit
13477413 5 3170 1881 +1289 0x88a53ec4... BloXroute Regulated
13481902 0 3081 1794 +1287 gateway.fmas_lido 0x8527d16c... Ultra Sound
13476124 0 3081 1794 +1287 0x8a850621... Ultra Sound
13475448 1 3098 1812 +1286 ether.fi 0xb26f9666... Titan Relay
13478063 1 3095 1812 +1283 0x8527d16c... Ultra Sound
13479699 1 3095 1812 +1283 gateway.fmas_lido 0x8527d16c... Ultra Sound
13476353 7 3199 1916 +1283 blockdaemon_lido 0xb7c5e609... BloXroute Regulated
13475438 0 3077 1794 +1283 bitstamp 0x91a8729e... BloXroute Max Profit
13476095 0 3077 1794 +1283 0x855b00e6... BloXroute Max Profit
13477400 3 3129 1847 +1282 p2porg 0x823e0146... Flashbots
13476562 8 3216 1934 +1282 0x8db2a99d... BloXroute Max Profit
13477142 0 3075 1794 +1281 everstake 0x853b0078... Aestus
13480041 5 3162 1881 +1281 0xb26f9666... Titan Relay
13474938 3 3127 1847 +1280 everstake 0xb26f9666... Titan Relay
13479109 1 3092 1812 +1280 everstake 0x853b0078... Aestus
13475993 1 3092 1812 +1280 0x8527d16c... Ultra Sound
13475295 12 3283 2003 +1280 0x853b0078... Ultra Sound
13476079 9 3230 1951 +1279 0x853b0078... BloXroute Max Profit
13481178 5 3160 1881 +1279 p2porg 0x8527d16c... Ultra Sound
13477983 1 3090 1812 +1278 ether.fi 0x8527d16c... Ultra Sound
13477646 1 3089 1812 +1277 stakingfacilities_lido 0x8527d16c... Ultra Sound
13478379 0 3071 1794 +1277 everstake 0xb26f9666... Titan Relay
13477632 11 3261 1986 +1275 whale_0xdd6c 0x856b0004... Ultra Sound
13475668 0 3069 1794 +1275 gateway.fmas_lido 0x852b0070... Ultra Sound
13481004 5 3156 1881 +1275 blockscape_lido 0x88857150... Ultra Sound
13475567 3 3121 1847 +1274 0xb26f9666... BloXroute Max Profit
13480578 6 3173 1899 +1274 ether.fi 0x856b0004... Aestus
13476314 4 3138 1864 +1274 mantle 0x8db2a99d... Flashbots
13481715 9 3225 1951 +1274 figment 0x853b0078... BloXroute Max Profit
13479091 0 3068 1794 +1274 everstake 0x8527d16c... Ultra Sound
13479981 10 3242 1968 +1274 everstake 0xb26f9666... Titan Relay
13478739 1 3085 1812 +1273 bitstamp 0x853b0078... Agnostic Gnosis
13475364 1 3085 1812 +1273 p2porg 0x8527d16c... Ultra Sound
13475986 0 3066 1794 +1272 0x91a8729e... BloXroute Max Profit
13476401 0 3066 1794 +1272 everstake 0xb26f9666... Titan Relay
13479772 0 3065 1794 +1271 p2porg 0xb67eaa5e... BloXroute Max Profit
13480976 5 3151 1881 +1270 stakingfacilities_lido 0x856b0004... Aestus
13481739 4 3133 1864 +1269 kelp 0xb26f9666... Titan Relay
13481843 1 3080 1812 +1268 everstake 0xb67eaa5e... BloXroute Regulated
13478621 0 3062 1794 +1268 ether.fi 0x8527d16c... Ultra Sound
13477980 8 3201 1934 +1267 0xb67eaa5e... BloXroute Regulated
13477389 6 3166 1899 +1267 p2porg 0x856b0004... Ultra Sound
Total anomalies: 272

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})