Mon, Jan 19, 2026

Propagation anomalies - 2026-01-19

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-19' AND slot_start_date_time < '2026-01-19'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-19' AND slot_start_date_time < '2026-01-19'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-19' AND slot_start_date_time < '2026-01-19'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-19' AND slot_start_date_time < '2026-01-19'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-19' AND slot_start_date_time < '2026-01-19'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-19' AND slot_start_date_time < '2026-01-19'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-19' AND slot_start_date_time < '2026-01-19'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-19' AND slot_start_date_time < '2026-01-19'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,183
MEV blocks: 6,713 (93.5%)
Local blocks: 470 (6.5%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1774.8 + 22.53 × blob_count (R² = 0.020)
Residual σ = 630.0ms
Anomalies (>2σ slow): 217 (3.0%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13498051 0 5565 1775 +3790 whale_0xdf0e Local Local
13497504 0 5502 1775 +3727 abyss_finance Local Local
13501792 0 5399 1775 +3624 upbit Local Local
13499040 5 5392 1887 +3505 upbit Local Local
13503220 0 5082 1775 +3307 solo_stakers Local Local
13498944 0 4304 1775 +2529 upbit Local Local
13501300 0 4241 1775 +2466 ether.fi Local Local
13498656 0 4221 1775 +2446 whale_0xe389 Local Local
13501268 0 4088 1775 +2313 ether.fi Local Local
13498503 0 4005 1775 +2230 bloxstaking Local Local
13499551 1 3950 1797 +2153 blockdaemon_lido 0x8527d16c... Ultra Sound
13498460 7 4064 1933 +2131 blockscape_lido 0x8db2a99d... Ultra Sound
13503456 3 3848 1842 +2006 upbit Local Local
13500928 0 3598 1775 +1823 solo_stakers 0x8a850621... Titan Relay
13503234 5 3709 1887 +1822 0x856b0004... Ultra Sound
13498981 0 3595 1775 +1820 0x88857150... Ultra Sound
13498041 1 3596 1797 +1799 revolut 0xb67eaa5e... Titan Relay
13502242 2 3614 1820 +1794 ether.fi 0xb26f9666... Titan Relay
13498217 5 3678 1887 +1791 binance 0x8a850621... Ultra Sound
13502616 0 3564 1775 +1789 0xa1da2978... Ultra Sound
13499303 0 3562 1775 +1787 0xb67eaa5e... BloXroute Regulated
13499116 0 3553 1775 +1778 0xb7c5e609... BloXroute Regulated
13500811 13 3845 2068 +1777 revolut 0xb67eaa5e... Titan Relay
13498216 3 3614 1842 +1772 0x8527d16c... Ultra Sound
13503455 0 3527 1775 +1752 upbit 0x8a850621... Titan Relay
13501641 4 3610 1865 +1745 0x8527d16c... Ultra Sound
13497752 0 3519 1775 +1744 blockdaemon 0xb26f9666... Titan Relay
13502839 2 3562 1820 +1742 0x8527d16c... Ultra Sound
13497121 5 3628 1887 +1741 0x8527d16c... Ultra Sound
13500817 0 3506 1775 +1731 ether.fi 0xb26f9666... Aestus
13498771 5 3617 1887 +1730 0x8527d16c... Ultra Sound
13500678 6 3617 1910 +1707 0xb26f9666... BloXroute Regulated
13502895 4 3566 1865 +1701 0xb67eaa5e... Titan Relay
13496473 15 3812 2113 +1699 0xb67eaa5e... BloXroute Max Profit
13498033 5 3582 1887 +1695 blockdaemon_lido 0xb67eaa5e... Titan Relay
13499803 11 3715 2023 +1692 kraken 0xb26f9666... EthGas
13501494 8 3642 1955 +1687 0x850b00e0... BloXroute Regulated
13501677 12 3727 2045 +1682 ether.fi 0x88857150... EthGas
13503552 0 3444 1775 +1669 0xac23f8cc... BloXroute Max Profit
13497346 7 3599 1933 +1666 revolut 0x8527d16c... Ultra Sound
13496851 8 3619 1955 +1664 blockdaemon 0x8527d16c... Ultra Sound
13499052 11 3686 2023 +1663 0x82c466b9... BloXroute Regulated
13501441 0 3437 1775 +1662 0x88857150... Ultra Sound
13496800 4 3527 1865 +1662 blockdaemon_lido 0xb26f9666... BloXroute Regulated
13498945 0 3434 1775 +1659 blockdaemon_lido 0x83d6a6ab... Ultra Sound
13501673 0 3429 1775 +1654 0x91a8729e... BloXroute Max Profit
13497544 1 3449 1797 +1652 whale_0xdd6c 0x8527d16c... Ultra Sound
13499251 6 3560 1910 +1650 blockdaemon 0x91b123d8... BloXroute Regulated
13499313 0 3419 1775 +1644 revolut Local Local
13500006 6 3554 1910 +1644 everstake 0xb26f9666... Titan Relay
13502543 6 3542 1910 +1632 whale_0x7c1b 0xb26f9666... Titan Relay
13499641 1 3416 1797 +1619 binance 0x823e0146... Flashbots
13497351 1 3414 1797 +1617 whale_0xdd6c 0xb26f9666... BloXroute Regulated
13501084 3 3445 1842 +1603 0xb26f9666... Titan Relay
13500001 5 3484 1887 +1597 blockdaemon 0x88510a78... BloXroute Regulated
13498208 5 3483 1887 +1596 stakingfacilities_lido 0x8527d16c... Ultra Sound
13500354 1 3377 1797 +1580 blockdaemon 0xb26f9666... Titan Relay
13500520 14 3665 2090 +1575 0x8527d16c... Ultra Sound
13496870 1 3371 1797 +1574 0xb26f9666... Titan Relay
13501280 1 3365 1797 +1568 stakingfacilities_lido 0x8527d16c... Ultra Sound
13501024 0 3341 1775 +1566 blockdaemon 0x853b0078... Ultra Sound
13502654 4 3428 1865 +1563 blockdaemon_lido 0x88a53ec4... BloXroute Max Profit
13500634 8 3516 1955 +1561 blockdaemon 0x8527d16c... Ultra Sound
13497184 5 3447 1887 +1560 blockdaemon 0x850b00e0... BloXroute Regulated
13501444 0 3332 1775 +1557 0x850b00e0... BloXroute Max Profit
13497446 5 3423 1887 +1536 0x88a53ec4... BloXroute Regulated
13499501 0 3310 1775 +1535 blockdaemon 0xb26f9666... Titan Relay
13500389 0 3309 1775 +1534 blockdaemon_lido 0xb67eaa5e... Titan Relay
13498491 5 3420 1887 +1533 0x8a850621... Titan Relay
13499034 5 3417 1887 +1530 blockdaemon 0x850b00e0... BloXroute Regulated
13501952 6 3436 1910 +1526 stakingfacilities_lido 0x8527d16c... Ultra Sound
13498546 1 3323 1797 +1526 blockdaemon 0x853b0078... Ultra Sound
13498229 1 3316 1797 +1519 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13496774 0 3291 1775 +1516 luno 0x850b00e0... BloXroute Regulated
13498652 4 3380 1865 +1515 0x855b00e6... BloXroute Max Profit
13502260 0 3276 1775 +1501 blockdaemon_lido 0xb26f9666... Titan Relay
13500094 1 3289 1797 +1492 luno 0x91b123d8... BloXroute Regulated
13500694 5 3378 1887 +1491 blockdaemon 0x85fb0503... BloXroute Regulated
13501825 0 3263 1775 +1488 0x88a53ec4... BloXroute Regulated
13499580 3 3330 1842 +1488 blockdaemon 0xb26f9666... Titan Relay
13502752 5 3374 1887 +1487 stakingfacilities_lido 0x8527d16c... Ultra Sound
13503159 4 3351 1865 +1486 0x8a850621... Titan Relay
13503006 9 3462 1978 +1484 0x853b0078... Ultra Sound
13497990 0 3259 1775 +1484 blockdaemon_lido 0xb26f9666... Titan Relay
13497691 3 3325 1842 +1483 blockdaemon 0xb26f9666... Titan Relay
13500470 0 3255 1775 +1480 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13499325 6 3384 1910 +1474 revolut 0xb67eaa5e... BloXroute Regulated
13502829 2 3293 1820 +1473 blockdaemon 0xb26f9666... Titan Relay
13499439 4 3331 1865 +1466 blockdaemon_lido 0xb26f9666... Titan Relay
13499422 0 3239 1775 +1464 0xb26f9666... Titan Relay
13499143 0 3233 1775 +1458 0x91a8729e... BloXroute Regulated
13499561 3 3295 1842 +1453 0x88857150... Ultra Sound
13498882 8 3404 1955 +1449 blockdaemon_lido 0xb67eaa5e... Titan Relay
13503424 5 3334 1887 +1447 stakingfacilities_lido 0x88857150... Ultra Sound
13498983 0 3220 1775 +1445 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13497560 8 3400 1955 +1445 blockdaemon 0x88a53ec4... BloXroute Regulated
13503031 8 3400 1955 +1445 blockdaemon_lido 0x88857150... Ultra Sound
13501088 8 3395 1955 +1440 p2porg 0x853b0078... Ultra Sound
13503176 4 3304 1865 +1439 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13501194 5 3324 1887 +1437 blockdaemon 0xb67eaa5e... BloXroute Regulated
13502301 1 3231 1797 +1434 0x850b00e0... BloXroute Max Profit
13498000 7 3354 1933 +1421 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13498456 1 3216 1797 +1419 gateway.fmas_lido 0x850b00e0... BloXroute Max Profit
13499451 8 3373 1955 +1418 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13502944 5 3305 1887 +1418 whale_0x7c1b 0x8db2a99d... Flashbots
13498020 0 3191 1775 +1416 0xb5f83342... Ultra Sound
13496507 6 3325 1910 +1415 blockdaemon 0x8527d16c... Ultra Sound
13501206 15 3523 2113 +1410 blockdaemon 0xb26f9666... Titan Relay
13497802 9 3387 1978 +1409 ether.fi 0x8527d16c... Ultra Sound
13498400 5 3296 1887 +1409 stakingfacilities_lido 0x8527d16c... Ultra Sound
13501654 7 3339 1933 +1406 0xb26f9666... BloXroute Max Profit
13502099 8 3361 1955 +1406 figment 0x8527d16c... Ultra Sound
13499152 11 3427 2023 +1404 blockdaemon_lido 0xb67eaa5e... Titan Relay
13497812 8 3358 1955 +1403 blockdaemon 0xb67eaa5e... BloXroute Regulated
13501001 5 3283 1887 +1396 solo_stakers 0xb67eaa5e... Titan Relay
13497034 8 3348 1955 +1393 blockdaemon 0xb26f9666... Titan Relay
13501693 8 3347 1955 +1392 blockdaemon 0x853b0078... Ultra Sound
13502412 5 3275 1887 +1388 0x850b00e0... BloXroute Regulated
13500352 1 3179 1797 +1382 everstake 0xb26f9666... Titan Relay
13503188 10 3381 2000 +1381 0x853b0078... Ultra Sound
13499969 6 3289 1910 +1379 0x853b0078... Ultra Sound
13502606 0 3153 1775 +1378 blockdaemon_lido 0x8527d16c... Ultra Sound
13501709 10 3378 2000 +1378 p2porg 0x850b00e0... BloXroute Regulated
13502241 0 3151 1775 +1376 0xb67eaa5e... BloXroute Max Profit
13501333 10 3372 2000 +1372 blockdaemon_lido 0xb67eaa5e... Titan Relay
13501848 12 3417 2045 +1372 blockdaemon_lido 0x88857150... Ultra Sound
13500065 0 3136 1775 +1361 ether.fi 0x88857150... Ultra Sound
13500775 0 3135 1775 +1360 gateway.fmas_lido 0x88510a78... Flashbots
13499441 0 3132 1775 +1357 0x823e0146... BloXroute Max Profit
13500409 0 3131 1775 +1356 0x88510a78... Flashbots
13496732 9 3333 1978 +1355 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13497284 8 3308 1955 +1353 0x8db2a99d... BloXroute Max Profit
13499572 12 3396 2045 +1351 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13499193 0 3123 1775 +1348 p2porg 0x855b00e6... BloXroute Max Profit
13502759 1 3145 1797 +1348 blockscape_lido 0x8527d16c... Ultra Sound
13502514 0 3118 1775 +1343 0x88a53ec4... BloXroute Max Profit
13498121 0 3117 1775 +1342 p2porg 0x853b0078... Titan Relay
13500415 0 3116 1775 +1341 everstake 0x8527d16c... Ultra Sound
13500713 3 3181 1842 +1339 0x850b00e0... BloXroute Regulated
13496541 0 3112 1775 +1337 p2porg 0x852b0070... Aestus
13499068 3 3179 1842 +1337 p2porg 0x8527d16c... Ultra Sound
13502140 11 3358 2023 +1335 0xb26f9666... BloXroute Regulated
13501197 15 3448 2113 +1335 blockdaemon_lido 0xb67eaa5e... Titan Relay
13496654 3 3171 1842 +1329 0xb67eaa5e... BloXroute Regulated
13497550 8 3282 1955 +1327 mantle 0xb67eaa5e... BloXroute Regulated
13500624 11 3349 2023 +1326 0x850b00e0... BloXroute Max Profit
13500996 4 3190 1865 +1325 0x850b00e0... Flashbots
13500027 0 3099 1775 +1324 ether.fi 0xb26f9666... Titan Relay
13502470 7 3256 1933 +1323 p2porg 0x853b0078... Aestus
13500606 0 3094 1775 +1319 everstake 0x823e0146... BloXroute Max Profit
13498386 6 3229 1910 +1319 0xb67eaa5e... BloXroute Regulated
13498146 6 3229 1910 +1319 0xb67eaa5e... BloXroute Regulated
13500929 5 3206 1887 +1319 stakingfacilities_lido 0xac23f8cc... Flashbots
13497058 11 3340 2023 +1317 luno 0xb26f9666... Titan Relay
13498193 0 3092 1775 +1317 p2porg 0x856b0004... Agnostic Gnosis
13498858 7 3247 1933 +1314 0x850b00e0... BloXroute Max Profit
13501039 5 3198 1887 +1311 p2porg 0x8527d16c... Ultra Sound
13499477 8 3264 1955 +1309 p2porg 0x88a53ec4... BloXroute Max Profit
13500155 6 3218 1910 +1308 gateway.fmas_lido 0x8db2a99d... BloXroute Max Profit
13500770 5 3195 1887 +1308 ether.fi 0x8527d16c... Ultra Sound
13501967 11 3330 2023 +1307 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13498905 11 3330 2023 +1307 0x856b0004... Agnostic Gnosis
13497964 3 3149 1842 +1307 0xb67eaa5e... BloXroute Regulated
13498485 1 3101 1797 +1304 0xb67eaa5e... BloXroute Regulated
13502400 0 3076 1775 +1301 nethermind_lido 0x853b0078... Ultra Sound
13499220 0 3076 1775 +1301 0x88510a78... Flashbots
13501462 1 3098 1797 +1301 p2porg 0x856b0004... Agnostic Gnosis
13498029 2 3120 1820 +1300 everstake 0xb67eaa5e... BloXroute Regulated
13497589 0 3074 1775 +1299 p2porg 0x8527d16c... Ultra Sound
13497864 0 3070 1775 +1295 p2porg 0x8527d16c... Ultra Sound
13500319 5 3182 1887 +1295 everstake 0xb67eaa5e... BloXroute Max Profit
13497809 3 3136 1842 +1294 ether.fi 0x8527d16c... Ultra Sound
13497420 6 3203 1910 +1293 ether.fi 0x853b0078... Agnostic Gnosis
13502294 1 3090 1797 +1293 gateway.fmas_lido 0x8527d16c... Ultra Sound
13502086 0 3067 1775 +1292 p2porg 0x8db2a99d... Flashbots
13500115 0 3067 1775 +1292 p2porg 0x91a8729e... BloXroute Max Profit
13500298 2 3111 1820 +1291 whale_0x7791 0xb67eaa5e... BloXroute Max Profit
13499898 8 3244 1955 +1289 gateway.fmas_lido 0xb26f9666... Titan Relay
13498244 3 3131 1842 +1289 0x8a850621... Titan Relay
13498179 0 3063 1775 +1288 everstake 0xb26f9666... Titan Relay
13498410 0 3063 1775 +1288 figment 0x8527d16c... Ultra Sound
13499285 3 3127 1842 +1285 0x88a53ec4... BloXroute Max Profit
13501226 13 3352 2068 +1284 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13499414 0 3059 1775 +1284 everstake 0xb26f9666... Titan Relay
13501657 0 3058 1775 +1283 0xb7c5e609... BloXroute Max Profit
13496792 6 3192 1910 +1282 figment 0x856b0004... Agnostic Gnosis
13502816 3 3124 1842 +1282 bitstamp 0x8527d16c... Ultra Sound
13502977 5 3169 1887 +1282 0x8527d16c... Ultra Sound
13502609 13 3348 2068 +1280 0x88a53ec4... BloXroute Regulated
13498682 0 3055 1775 +1280 p2porg 0x8db2a99d... Flashbots
13499434 3 3122 1842 +1280 p2porg 0xac23f8cc... Flashbots
13499056 3 3122 1842 +1280 abyss_finance 0x8527d16c... Ultra Sound
13498894 5 3167 1887 +1280 p2porg 0x8527d16c... Ultra Sound
13498115 0 3054 1775 +1279 0x91a8729e... BloXroute Max Profit
13498811 0 3053 1775 +1278 ether.fi 0x852b0070... Agnostic Gnosis
13500834 4 3140 1865 +1275 figment 0x8527d16c... Ultra Sound
13499905 0 3049 1775 +1274 p2porg 0x8527d16c... Ultra Sound
13502610 0 3048 1775 +1273 figment 0x8527d16c... Ultra Sound
13502714 0 3048 1775 +1273 ether.fi 0x852b0070... Aestus
13496959 0 3048 1775 +1273 0x853b0078... BloXroute Max Profit
13502169 4 3138 1865 +1273 0x853b0078... Agnostic Gnosis
13499622 1 3070 1797 +1273 gateway.fmas_lido 0xb7c5e609... BloXroute Max Profit
13503160 6 3182 1910 +1272 everstake 0xb67eaa5e... BloXroute Regulated
13500349 3 3112 1842 +1270 0x8527d16c... Ultra Sound
13499705 0 3044 1775 +1269 0xac23f8cc... BloXroute Max Profit
13498749 1 3066 1797 +1269 p2porg 0x88a53ec4... BloXroute Max Profit
13497027 2 3088 1820 +1268 ether.fi 0xac23f8cc... Flashbots
13503531 4 3133 1865 +1268 0xac23f8cc... BloXroute Max Profit
13496709 7 3200 1933 +1267 0x8527d16c... Ultra Sound
13497266 5 3153 1887 +1266 p2porg 0xb26f9666... BloXroute Max Profit
13496531 9 3243 1978 +1265 bitstamp 0x856b0004... Ultra Sound
13496997 5 3152 1887 +1265 p2porg 0x8db2a99d... Flashbots
13502580 3 3106 1842 +1264 0x8527d16c... Ultra Sound
13499327 0 3037 1775 +1262 kelp 0xb26f9666... Titan Relay
13499013 2 3082 1820 +1262 whale_0xe985 0x8db2a99d... BloXroute Max Profit
13497435 7 3194 1933 +1261 ether.fi 0x853b0078... Ultra Sound
13500762 0 3036 1775 +1261 0x91a8729e... BloXroute Regulated
Total anomalies: 217

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})