Sun, Jan 18, 2026

Propagation anomalies - 2026-01-18

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-18' AND slot_start_date_time < '2026-01-18'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-18' AND slot_start_date_time < '2026-01-18'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-18' AND slot_start_date_time < '2026-01-18'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-18' AND slot_start_date_time < '2026-01-18'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-18' AND slot_start_date_time < '2026-01-18'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-18' AND slot_start_date_time < '2026-01-18'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-18' AND slot_start_date_time < '2026-01-18'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-18' AND slot_start_date_time < '2026-01-18'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,190
MEV blocks: 6,685 (93.0%)
Local blocks: 505 (7.0%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1768.6 + 19.65 × blob_count (R² = 0.016)
Residual σ = 624.6ms
Anomalies (>2σ slow): 273 (3.8%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13491676 0 6311 1769 +4542 solo_stakers Local Local
13492672 0 5434 1769 +3665 Local Local
13493781 0 5334 1769 +3565 solo_stakers Local Local
13494346 0 5286 1769 +3517 solo_stakers Local Local
13493696 0 4922 1769 +3153 upbit Local Local
13489600 0 4360 1769 +2591 upbit Local Local
13491872 0 4355 1769 +2586 upbit Local Local
13493791 0 3987 1769 +2218 coinbase 0x99dbe3e8... Aestus
13493632 0 3969 1769 +2200 Local Local
13491714 8 3954 1926 +2028 abyss_finance 0xb26f9666... Titan Relay
13492064 0 3702 1769 +1933 liquid_collective 0xb26f9666... Titan Relay
13493053 5 3740 1867 +1873 0x8a850621... Titan Relay
13489999 5 3717 1867 +1850 abyss_finance 0x8527d16c... Ultra Sound
13492032 0 3608 1769 +1839 ether.fi 0x91a8729e... BloXroute Max Profit
13496352 2 3632 1808 +1824 revolut 0x8527d16c... Ultra Sound
13495902 3 3626 1828 +1798 0x88857150... Ultra Sound
13492804 8 3722 1926 +1796 0xb26f9666... EthGas
13493060 4 3616 1847 +1769 0x8527d16c... Ultra Sound
13494818 0 3530 1769 +1761 ether.fi 0xb26f9666... Titan Relay
13489395 1 3547 1788 +1759 0x91b123d8... BloXroute Regulated
13495731 6 3637 1887 +1750 0x8527d16c... Ultra Sound
13493134 1 3536 1788 +1748 revolut 0x8527d16c... Ultra Sound
13492376 2 3548 1808 +1740 0xb26f9666... Titan Relay
13494873 4 3583 1847 +1736 rocketpool 0xb67eaa5e... Titan Relay
13494179 0 3496 1769 +1727 solo_stakers Local Local
13493726 5 3593 1867 +1726 0x8527d16c... Ultra Sound
13495511 0 3494 1769 +1725 figment 0x91a8729e... Ultra Sound
13492755 0 3493 1769 +1724 revolut 0x88857150... Ultra Sound
13489353 5 3591 1867 +1724 blockdaemon 0x853b0078... Ultra Sound
13495160 6 3606 1887 +1719 0xb26f9666... Titan Relay
13489536 4 3565 1847 +1718 binance 0xb67eaa5e... Titan Relay
13492554 4 3562 1847 +1715 blockdaemon 0xb26f9666... Titan Relay
13491616 6 3593 1887 +1706 blockdaemon_lido 0xb67eaa5e... Titan Relay
13495125 10 3665 1965 +1700 0x8527d16c... Ultra Sound
13491232 0 3459 1769 +1690 stakingfacilities_lido 0x8527d16c... Ultra Sound
13492069 5 3543 1867 +1676 liquid_collective 0x856b0004... Ultra Sound
13491450 7 3582 1906 +1676 figment 0x8527d16c... Ultra Sound
13492307 6 3559 1887 +1672 figment 0x8527d16c... Ultra Sound
13491358 0 3404 1769 +1635 0x8527d16c... Ultra Sound
13495496 3 3457 1828 +1629 0x8a850621... Titan Relay
13494035 5 3483 1867 +1616 blockdaemon_lido 0xb67eaa5e... Titan Relay
13494841 8 3527 1926 +1601 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13491215 3 3425 1828 +1597 ether.fi 0x8527d16c... Ultra Sound
13491532 3 3420 1828 +1592 blockdaemon 0x8a850621... Ultra Sound
13491057 9 3533 1945 +1588 whale_0x7c1b 0xb26f9666... Titan Relay
13493490 0 3350 1769 +1581 0x88857150... Ultra Sound
13489510 4 3416 1847 +1569 ether.fi 0xb26f9666... Titan Relay
13492396 1 3347 1788 +1559 0xb67eaa5e... BloXroute Regulated
13494206 0 3324 1769 +1555 blockdaemon_lido 0xb26f9666... Titan Relay
13495904 1 3336 1788 +1548 ether.fi 0x8db2a99d... Flashbots
13489728 4 3385 1847 +1538 bridgetower_lido 0xb67eaa5e... BloXroute Max Profit
13495948 1 3325 1788 +1537 blockdaemon 0x857b0038... Ultra Sound
13489252 3 3364 1828 +1536 blockdaemon 0x8a850621... Ultra Sound
13492047 12 3535 2004 +1531 revolut 0x8527d16c... Ultra Sound
13495685 0 3299 1769 +1530 luno 0xb26f9666... Titan Relay
13494558 3 3356 1828 +1528 blockdaemon 0xb67eaa5e... BloXroute Regulated
13491322 1 3313 1788 +1525 blockdaemon 0xb67eaa5e... BloXroute Regulated
13491183 6 3409 1887 +1522 ether.fi 0x8527d16c... Ultra Sound
13492654 3 3342 1828 +1514 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13494801 7 3418 1906 +1512 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13495935 0 3278 1769 +1509 0x83bee517... BloXroute Regulated
13491563 1 3296 1788 +1508 luno 0x88a53ec4... BloXroute Regulated
13493888 4 3354 1847 +1507 blockscape_lido 0x823e0146... Ultra Sound
13492851 1 3293 1788 +1505 0xb26f9666... Titan Relay
13495639 9 3450 1945 +1505 0x855b00e6... BloXroute Max Profit
13493177 1 3291 1788 +1503 blockdaemon 0x850b00e0... BloXroute Regulated
13491641 4 3349 1847 +1502 blockdaemon 0xb67eaa5e... BloXroute Regulated
13493331 6 3388 1887 +1501 ether.fi 0x823e0146... Flashbots
13495686 5 3364 1867 +1497 luno 0x850b00e0... BloXroute Regulated
13490145 5 3359 1867 +1492 blockdaemon 0xb7c5e609... BloXroute Regulated
13494005 0 3260 1769 +1491 0xb26f9666... Titan Relay
13490555 0 3256 1769 +1487 kraken 0xb26f9666... EthGas
13494503 3 3314 1828 +1486 blockdaemon_lido 0xb26f9666... Titan Relay
13490065 7 3391 1906 +1485 blockdaemon 0x88a53ec4... BloXroute Regulated
13493856 0 3246 1769 +1477 everstake 0xb26f9666... Titan Relay
13491254 5 3344 1867 +1477 blockdaemon 0x88a53ec4... BloXroute Regulated
13496341 0 3242 1769 +1473 blockdaemon 0x926b7905... BloXroute Regulated
13491757 5 3336 1867 +1469 0x88a53ec4... BloXroute Max Profit
13493056 3 3296 1828 +1468 rocklogicgmbh_lido 0x88a53ec4... BloXroute Regulated
13496228 0 3237 1769 +1468 revolut 0x853b0078... Ultra Sound
13490547 2 3276 1808 +1468 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13491206 0 3236 1769 +1467 blockscape_lido 0x852b0070... Aestus
13491526 5 3334 1867 +1467 blockdaemon 0x8a850621... Titan Relay
13490427 5 3325 1867 +1458 luno 0x850b00e0... BloXroute Regulated
13496174 3 3284 1828 +1456 0xb26f9666... Titan Relay
13490878 0 3224 1769 +1455 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13494517 0 3221 1769 +1452 revolut 0x850b00e0... BloXroute Regulated
13493712 7 3357 1906 +1451 kraken 0xb26f9666... EthGas
13492225 8 3371 1926 +1445 blockdaemon_lido 0x8527d16c... Ultra Sound
13490621 1 3228 1788 +1440 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13492049 6 3326 1887 +1439 bitstamp 0x88a53ec4... BloXroute Max Profit
13492056 6 3324 1887 +1437 luno 0xb26f9666... Titan Relay
13494024 0 3203 1769 +1434 ether.fi 0xb26f9666... Aestus
13495745 5 3298 1867 +1431 blockdaemon 0xb26f9666... Titan Relay
13490923 5 3298 1867 +1431 luno 0x856b0004... Ultra Sound
13491905 0 3195 1769 +1426 blockdaemon 0xb26f9666... Titan Relay
13495371 5 3291 1867 +1424 revolut 0x853b0078... Titan Relay
13490717 6 3310 1887 +1423 blockdaemon_lido 0xb26f9666... Titan Relay
13495549 5 3290 1867 +1423 nethermind_lido 0x8527d16c... Ultra Sound
13492308 10 3388 1965 +1423 0x850b00e0... BloXroute Regulated
13493163 9 3367 1945 +1422 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13489831 0 3190 1769 +1421 0xb26f9666... Titan Relay
13493556 5 3284 1867 +1417 blockdaemon 0xb26f9666... Titan Relay
13489546 5 3281 1867 +1414 ether.fi 0xb26f9666... Titan Relay
13492726 1 3199 1788 +1411 stakingfacilities_lido 0x8527d16c... Ultra Sound
13493123 8 3335 1926 +1409 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13491369 10 3374 1965 +1409 blockdaemon_lido 0x91b123d8... BloXroute Regulated
13490888 5 3275 1867 +1408 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13493600 0 3176 1769 +1407 0x8a850621... Ultra Sound
13489350 1 3195 1788 +1407 blockdaemon_lido 0xb26f9666... Titan Relay
13496061 2 3213 1808 +1405 0xb67eaa5e... BloXroute Regulated
13490783 7 3309 1906 +1403 blockdaemon 0x853b0078... Ultra Sound
13491661 5 3264 1867 +1397 0x8527d16c... Ultra Sound
13495643 1 3183 1788 +1395 0x850b00e0... BloXroute Regulated
13492811 7 3299 1906 +1393 revolut 0xb26f9666... Titan Relay
13489555 9 3338 1945 +1393 ether.fi 0x8527d16c... Ultra Sound
13493572 12 3392 2004 +1388 blockdaemon 0x853b0078... Ultra Sound
13491091 11 3370 1985 +1385 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13496131 16 3467 2083 +1384 figment 0x850b00e0... Flashbots
13496139 10 3348 1965 +1383 luno 0x853b0078... Ultra Sound
13489709 5 3244 1867 +1377 0xb67eaa5e... BloXroute Max Profit
13489663 5 3238 1867 +1371 blockdaemon_lido 0xb26f9666... Titan Relay
13496278 1 3157 1788 +1369 0x850b00e0... BloXroute Regulated
13493558 9 3313 1945 +1368 everstake 0x855b00e6... BloXroute Max Profit
13493830 20 3527 2162 +1365 blockscape_lido Local Local
13491571 0 3134 1769 +1365 0x850b00e0... BloXroute Regulated
13494331 0 3132 1769 +1363 p2porg 0x850b00e0... BloXroute Regulated
13495123 1 3150 1788 +1362 p2porg 0xb26f9666... BloXroute Regulated
13495348 6 3246 1887 +1359 p2porg 0x853b0078... Titan Relay
13492207 7 3265 1906 +1359 0x8527d16c... Ultra Sound
13493336 1 3144 1788 +1356 0x850b00e0... BloXroute Regulated
13490902 0 3122 1769 +1353 0x860d4173... Flashbots
13492026 5 3218 1867 +1351 0xb26f9666... Titan Relay
13495051 0 3119 1769 +1350 p2porg 0x856b0004... BloXroute Max Profit
13490802 0 3118 1769 +1349 p2porg 0x8527d16c... Ultra Sound
13496377 1 3136 1788 +1348 gateway.fmas_lido 0x850b00e0... BloXroute Max Profit
13491744 3 3175 1828 +1347 0xb67eaa5e... BloXroute Max Profit
13491234 6 3229 1887 +1342 0x850b00e0... BloXroute Regulated
13489874 0 3111 1769 +1342 everstake 0x8527d16c... Ultra Sound
13492955 0 3111 1769 +1342 figment 0x8db2a99d... Flashbots
13493946 5 3209 1867 +1342 0x850b00e0... BloXroute Regulated
13491290 9 3284 1945 +1339 blockdaemon 0x850b00e0... BloXroute Regulated
13493790 5 3202 1867 +1335 p2porg 0x8527d16c... Ultra Sound
13489471 0 3102 1769 +1333 everstake 0xb26f9666... Aestus
13495435 0 3100 1769 +1331 0x853b0078... Titan Relay
13491451 0 3099 1769 +1330 blockscape_lido 0x856b0004... Ultra Sound
13492092 3 3157 1828 +1329 ether.fi 0x8527d16c... Ultra Sound
13494852 0 3097 1769 +1328 0x8527d16c... Ultra Sound
13495071 1 3116 1788 +1328 0x823e0146... BloXroute Max Profit
13492642 0 3096 1769 +1327 everstake 0xb67eaa5e... BloXroute Regulated
13496052 6 3213 1887 +1326 p2porg 0x8db2a99d... Flashbots
13490198 3 3154 1828 +1326 kelp 0x88a53ec4... BloXroute Regulated
13489742 2 3133 1808 +1325 0xb26f9666... BloXroute Regulated
13493380 0 3093 1769 +1324 everstake 0x8527d16c... Ultra Sound
13494041 6 3210 1887 +1323 blockdaemon_lido 0x853b0078... Ultra Sound
13494167 5 3190 1867 +1323 0x8a850621... Ultra Sound
13489770 1 3111 1788 +1323 ether.fi 0x8527d16c... Ultra Sound
13489309 4 3166 1847 +1319 p2porg 0x856b0004... Agnostic Gnosis
13495669 6 3205 1887 +1318 everstake 0xb67eaa5e... BloXroute Max Profit
13492512 0 3087 1769 +1318 whale_0x7c1b 0x8527d16c... Ultra Sound
13495494 0 3087 1769 +1318 0xb26f9666... BloXroute Max Profit
13493109 0 3085 1769 +1316 blockscape_lido 0x8527d16c... Ultra Sound
13494597 10 3281 1965 +1316 blockdaemon_lido 0xb26f9666... Titan Relay
13494773 5 3180 1867 +1313 p2porg 0x8527d16c... Ultra Sound
13495131 2 3120 1808 +1312 p2porg 0x8db2a99d... Flashbots
13494619 1 3100 1788 +1312 ether.fi 0xb67eaa5e... BloXroute Regulated
13495856 8 3237 1926 +1311 0x8527d16c... Ultra Sound
13495321 1 3099 1788 +1311 ether.fi 0xac23f8cc... BloXroute Max Profit
13490336 3 3138 1828 +1310 everstake 0x8527d16c... Ultra Sound
13492916 5 3177 1867 +1310 ether.fi 0x8db2a99d... Flashbots
13489218 0 3077 1769 +1308 0x91a8729e... BloXroute Max Profit
13490951 0 3077 1769 +1308 figment 0x8527d16c... Ultra Sound
13494396 0 3077 1769 +1308 p2porg 0x8527d16c... Ultra Sound
13489440 10 3273 1965 +1308 stakefish Local Local
13492496 0 3076 1769 +1307 p2porg 0xac23f8cc... Flashbots
13489348 5 3174 1867 +1307 0xb67eaa5e... BloXroute Regulated
13494918 3 3134 1828 +1306 0x8527d16c... Ultra Sound
13490749 0 3074 1769 +1305 ether.fi 0x8527d16c... Ultra Sound
13495703 0 3073 1769 +1304 p2porg 0x851b00b1... BloXroute Max Profit
13493399 5 3170 1867 +1303 p2porg 0xb67eaa5e... BloXroute Max Profit
13493103 4 3150 1847 +1303 p2porg 0xb67eaa5e... BloXroute Max Profit
13495236 0 3071 1769 +1302 everstake 0xb67eaa5e... BloXroute Max Profit
13493966 4 3149 1847 +1302 0x823e0146... BloXroute Max Profit
13494552 3 3128 1828 +1300 0x8527d16c... Ultra Sound
13495179 0 3069 1769 +1300 gateway.fmas_lido 0x8527d16c... Ultra Sound
13489973 0 3068 1769 +1299 0xb26f9666... Titan Relay
13490425 5 3165 1867 +1298 bitstamp 0x88857150... Ultra Sound
13492106 0 3066 1769 +1297 gateway.fmas_lido 0x823e0146... Flashbots
13490351 2 3105 1808 +1297 p2porg 0x8db2a99d... BloXroute Max Profit
13495081 6 3182 1887 +1295 0xb67eaa5e... BloXroute Regulated
13495093 5 3162 1867 +1295 0x853b0078... BloXroute Max Profit
13496123 0 3063 1769 +1294 p2porg 0x8527d16c... Ultra Sound
13494551 10 3259 1965 +1294 p2porg 0xac23f8cc... Flashbots
13492423 0 3062 1769 +1293 everstake 0x8527d16c... Ultra Sound
13491998 0 3060 1769 +1291 p2porg 0x91a8729e... BloXroute Max Profit
13493591 5 3157 1867 +1290 figment 0x856b0004... Agnostic Gnosis
13495924 5 3157 1867 +1290 0xb67eaa5e... BloXroute Regulated
13493156 7 3196 1906 +1290 gateway.fmas_lido 0x8527d16c... Ultra Sound
13495217 1 3078 1788 +1290 0xb67eaa5e... BloXroute Max Profit
13489209 9 3235 1945 +1290 0xb67eaa5e... BloXroute Regulated
13494976 0 3057 1769 +1288 stakefish Local Local
13492274 0 3057 1769 +1288 0x8527d16c... Ultra Sound
13493892 12 3292 2004 +1288 blockdaemon_lido 0xb26f9666... Titan Relay
13494274 1 3075 1788 +1287 p2porg 0x853b0078... Flashbots
13492865 0 3055 1769 +1286 everstake 0x8db2a99d... Flashbots
13495245 0 3054 1769 +1285 0xb67eaa5e... BloXroute Max Profit
13489825 0 3054 1769 +1285 p2porg 0xb26f9666... BloXroute Max Profit
13495381 10 3250 1965 +1285 0x88a53ec4... BloXroute Max Profit
13491762 3 3112 1828 +1284 everstake 0x8527d16c... Ultra Sound
13496115 0 3053 1769 +1284 everstake 0x99dbe3e8... Agnostic Gnosis
13492259 0 3052 1769 +1283 gateway.fmas_lido 0x8527d16c... Ultra Sound
13493722 1 3071 1788 +1283 p2porg 0x853b0078... Aestus
13490752 3 3110 1828 +1282 ether.fi 0x8527d16c... Ultra Sound
13491502 0 3051 1769 +1282 0x8db2a99d... Flashbots
13495483 0 3051 1769 +1282 ether.fi 0x823e0146... Flashbots
13495300 8 3208 1926 +1282 0xb67eaa5e... BloXroute Max Profit
13494351 6 3168 1887 +1281 0x853b0078... BloXroute Max Profit
13495695 2 3089 1808 +1281 p2porg 0xac23f8cc... Flashbots
13492164 3 3108 1828 +1280 ether.fi 0x8527d16c... Ultra Sound
13495565 0 3049 1769 +1280 0x88a53ec4... BloXroute Regulated
13496091 0 3048 1769 +1279 0xb26f9666... Titan Relay
13494983 0 3048 1769 +1279 0x852b0070... Agnostic Gnosis
13490624 5 3144 1867 +1277 everstake 0x8db2a99d... Flashbots
13491949 1 3065 1788 +1277 0x88a53ec4... BloXroute Max Profit
13495320 2 3084 1808 +1276 0x856b0004... BloXroute Max Profit
13494278 3 3103 1828 +1275 p2porg 0x853b0078... BloXroute Max Profit
13495793 0 3044 1769 +1275 gateway.fmas_lido 0xb67eaa5e... BloXroute Max Profit
13489442 1 3062 1788 +1274 figment 0x853b0078... Ultra Sound
13493367 1 3062 1788 +1274 blockscape_lido 0xac23f8cc... Ultra Sound
13490662 0 3040 1769 +1271 gateway.fmas_lido 0x853b0078... Ultra Sound
13492546 1 3058 1788 +1270 0xb26f9666... Ultra Sound
13489496 9 3215 1945 +1270 stakingfacilities_lido 0x8527d16c... Ultra Sound
13494817 0 3038 1769 +1269 gateway.fmas_lido 0x8527d16c... Ultra Sound
13489626 7 3175 1906 +1269 0x823e0146... BloXroute Max Profit
13489515 0 3037 1769 +1268 everstake 0xb26f9666... Aestus
13492531 5 3135 1867 +1268 everstake 0x8527d16c... Ultra Sound
13493011 3 3094 1828 +1266 0xac23f8cc... BloXroute Max Profit
13493486 1 3054 1788 +1266 blockscape_lido 0x823e0146... Ultra Sound
13493877 6 3152 1887 +1265 0x8527d16c... Ultra Sound
13495064 0 3034 1769 +1265 0x8db2a99d... Flashbots
13492598 1 3053 1788 +1265 blockscape_lido 0x8527d16c... Ultra Sound
13490412 1 3053 1788 +1265 0x8527d16c... Ultra Sound
13493459 3 3092 1828 +1264 0x88a53ec4... BloXroute Max Profit
13490714 0 3033 1769 +1264 0xb67eaa5e... BloXroute Regulated
13489584 5 3131 1867 +1264 0xb67eaa5e... BloXroute Regulated
13491703 5 3131 1867 +1264 p2porg 0xb26f9666... BloXroute Regulated
13491067 5 3130 1867 +1263 p2porg 0x8527d16c... Ultra Sound
13492725 4 3110 1847 +1263 0xa230e2cf... BloXroute Regulated
13491448 1 3050 1788 +1262 ether.fi 0xb26f9666... Titan Relay
13492810 1 3050 1788 +1262 everstake 0x8527d16c... Ultra Sound
13489572 0 3030 1769 +1261 0x91a8729e... Ultra Sound
13492331 0 3029 1769 +1260 everstake 0x8527d16c... Ultra Sound
13493825 1 3048 1788 +1260 blockscape_lido 0x853b0078... Ultra Sound
13491044 0 3028 1769 +1259 gateway.fmas_lido 0x8527d16c... Ultra Sound
13490746 3 3086 1828 +1258 0x8527d16c... Ultra Sound
13495446 0 3026 1769 +1257 0xb67eaa5e... BloXroute Max Profit
13491918 5 3124 1867 +1257 gateway.fmas_lido 0x88a53ec4... BloXroute Max Profit
13492295 2 3065 1808 +1257 everstake 0xb7c5e609... BloXroute Max Profit
13494223 4 3104 1847 +1257 0xb26f9666... Titan Relay
13490557 0 3025 1769 +1256 blockscape_lido 0x8527d16c... Ultra Sound
13493070 4 3103 1847 +1256 ether.fi 0x8527d16c... Ultra Sound
13491157 1 3043 1788 +1255 0xb67eaa5e... BloXroute Max Profit
13493967 6 3141 1887 +1254 ether.fi 0xb7c5e609... BloXroute Max Profit
13494502 3 3081 1828 +1253 0x88a53ec4... BloXroute Max Profit
13495680 5 3120 1867 +1253 everstake 0x88a53ec4... BloXroute Max Profit
13489855 13 3277 2024 +1253 p2porg 0x850b00e0... BloXroute Max Profit
13491895 0 3020 1769 +1251 0xb26f9666... BloXroute Max Profit
13494902 8 3177 1926 +1251 p2porg 0x88857150... Ultra Sound
13493539 5 3118 1867 +1251 0xb26f9666... Titan Relay
13494258 2 3059 1808 +1251 gateway.fmas_lido 0x8527d16c... Ultra Sound
13489697 1 3039 1788 +1251 gateway.fmas_lido 0x823e0146... Flashbots
13495882 1 3038 1788 +1250 ether.fi 0x853b0078... Agnostic Gnosis
13489749 0 3018 1769 +1249 0xb26f9666... Titan Relay
Total anomalies: 273

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})