Thu, Jan 22, 2026

Propagation anomalies - 2026-01-22

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-22' AND slot_start_date_time < '2026-01-22'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-22' AND slot_start_date_time < '2026-01-22'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-22' AND slot_start_date_time < '2026-01-22'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-22' AND slot_start_date_time < '2026-01-22'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-22' AND slot_start_date_time < '2026-01-22'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-22' AND slot_start_date_time < '2026-01-22'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-22' AND slot_start_date_time < '2026-01-22'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-22' AND slot_start_date_time < '2026-01-22'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,166
MEV blocks: 6,732 (93.9%)
Local blocks: 434 (6.1%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1761.6 + 24.86 × blob_count (R² = 0.032)
Residual σ = 635.6ms
Anomalies (>2σ slow): 278 (3.9%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13522549 0 5402 1762 +3640 ether.fi Local Local
13521553 0 4338 1762 +2576 kraken Local Local
13524512 0 4200 1762 +2438 stakefish Local Local
13518252 1 4047 1787 +2260 ether.fi 0xb26f9666... Titan Relay
13519904 0 3860 1762 +2098 ether.fi Local Local
13521308 0 3817 1762 +2055 coinbase 0x91a8729e... Aestus
13519264 0 3792 1762 +2030 blockdaemon Local Local
13523411 0 3735 1762 +1973 ether.fi 0xa0366397... Flashbots
13522396 5 3797 1886 +1911 rocklogicgmbh_lido 0x853b0078... Ultra Sound
13522752 7 3839 1936 +1903 blockdaemon 0x853b0078... Ultra Sound
13525024 0 3637 1762 +1875 blockdaemon_lido Local Local
13520472 0 3616 1762 +1854 figment Local Local
13523618 1 3638 1787 +1851 0xb26f9666... Titan Relay
13520512 6 3751 1911 +1840 blockdaemon 0xb26f9666... Titan Relay
13522464 0 3601 1762 +1839 blockdaemon 0x8a850621... Ultra Sound
13518594 1 3594 1787 +1807 0x8527d16c... Ultra Sound
13520645 7 3740 1936 +1804 blockdaemon 0x88a53ec4... BloXroute Regulated
13522893 13 3856 2085 +1771 figment 0xb67eaa5e... BloXroute Regulated
13520768 3 3607 1836 +1771 whale_0x1435 0xb67eaa5e... BloXroute Max Profit
13522707 0 3521 1762 +1759 revolut 0xb26f9666... Titan Relay
13519052 1 3545 1787 +1758 0x8527d16c... Ultra Sound
13523872 7 3691 1936 +1755 blockdaemon_lido 0x88857150... Ultra Sound
13524435 7 3688 1936 +1752 blockdaemon 0xb67eaa5e... BloXroute Regulated
13523785 6 3658 1911 +1747 0xb26f9666... BloXroute Regulated
13524932 5 3619 1886 +1733 whale_0xdd6c 0x856b0004... BloXroute Max Profit
13522481 2 3538 1811 +1727 piertwo 0x88510a78... Flashbots
13519620 0 3482 1762 +1720 0x851b00b1... Ultra Sound
13518011 8 3676 1961 +1715 solo_stakers 0x856b0004... Ultra Sound
13519324 7 3649 1936 +1713 0xb26f9666... Titan Relay
13522133 6 3622 1911 +1711 0x850b00e0... BloXroute Regulated
13521123 7 3639 1936 +1703 0x850b00e0... BloXroute Regulated
13523683 1 3488 1787 +1701 everstake 0xb26f9666... Titan Relay
13520224 0 3461 1762 +1699 stakingfacilities_lido 0x8527d16c... Ultra Sound
13521763 5 3584 1886 +1698 0x8527d16c... Ultra Sound
13522086 14 3807 2110 +1697 everstake 0x853b0078... Ultra Sound
13521506 11 3732 2035 +1697 0xb26f9666... Titan Relay
13519808 10 3707 2010 +1697 revolut 0x8527d16c... Ultra Sound
13518135 7 3629 1936 +1693 blockdaemon 0xb26f9666... Titan Relay
13522866 5 3573 1886 +1687 abyss_finance 0x82c466b9... Flashbots
13522102 0 3443 1762 +1681 blockdaemon 0x88857150... Ultra Sound
13524853 9 3650 1985 +1665 0x8527d16c... Ultra Sound
13519144 9 3647 1985 +1662 0x8527d16c... Ultra Sound
13524634 1 3432 1787 +1645 everstake 0x855b00e6... BloXroute Max Profit
13518456 1 3431 1787 +1644 everstake 0x88a53ec4... BloXroute Regulated
13522297 6 3554 1911 +1643 blockdaemon 0x853b0078... Ultra Sound
13519231 9 3625 1985 +1640 revolut 0x82c466b9... BloXroute Regulated
13519483 4 3500 1861 +1639 everstake 0xb26f9666... Titan Relay
13523638 0 3392 1762 +1630 everstake 0xb26f9666... Titan Relay
13519302 16 3788 2159 +1629 blockdaemon 0x850b00e0... BloXroute Regulated
13518893 10 3638 2010 +1628 blockdaemon 0xb26f9666... Titan Relay
13520571 10 3637 2010 +1627 0x8527d16c... Ultra Sound
13522251 2 3434 1811 +1623 blockdaemon 0x850b00e0... BloXroute Regulated
13521448 1 3408 1787 +1621 everstake 0xb26f9666... Titan Relay
13518626 6 3524 1911 +1613 everstake 0x8527d16c... Ultra Sound
13519374 1 3394 1787 +1607 everstake 0xb26f9666... Titan Relay
13519624 4 3467 1861 +1606 0x8a850621... Titan Relay
13520898 5 3485 1886 +1599 everstake 0x88a53ec4... BloXroute Regulated
13519428 1 3385 1787 +1598 blockdaemon_lido 0x88a53ec4... BloXroute Max Profit
13525068 0 3357 1762 +1595 solo_stakers 0x852b0070... Aestus
13519226 1 3379 1787 +1592 everstake 0xb26f9666... Titan Relay
13519392 2 3401 1811 +1590 gateway.fmas_lido 0x88857150... Ultra Sound
13523789 2 3394 1811 +1583 everstake 0xb26f9666... Titan Relay
13518177 6 3489 1911 +1578 0x850b00e0... BloXroute Max Profit
13518948 1 3358 1787 +1571 everstake 0xb26f9666... Titan Relay
13522624 0 3333 1762 +1571 stakingfacilities_lido 0x88857150... Ultra Sound
13523775 3 3407 1836 +1571 whale_0xdd6c 0x8527d16c... Ultra Sound
13523061 1 3356 1787 +1569 0xb26f9666... EthGas
13518717 1 3355 1787 +1568 everstake 0x853b0078... Aestus
13519536 3 3402 1836 +1566 everstake 0x853b0078... BloXroute Max Profit
13519758 7 3500 1936 +1564 everstake 0x88a53ec4... BloXroute Max Profit
13519167 1 3349 1787 +1562 everstake 0xb26f9666... Titan Relay
13524677 1 3345 1787 +1558 blockdaemon_lido 0xb26f9666... Titan Relay
13521286 11 3591 2035 +1556 figment 0x853b0078... Ultra Sound
13525124 1 3342 1787 +1555 blockdaemon_lido 0xb67eaa5e... Titan Relay
13518617 1 3338 1787 +1551 everstake 0x8527d16c... Ultra Sound
13519767 4 3412 1861 +1551 blockdaemon 0x8a850621... Ultra Sound
13524051 15 3682 2135 +1547 0x856b0004... Ultra Sound
13519697 0 3304 1762 +1542 blockdaemon_lido 0x91a8729e... Ultra Sound
13519623 5 3425 1886 +1539 everstake 0xb26f9666... Titan Relay
13522791 9 3513 1985 +1528 0x850b00e0... BloXroute Regulated
13520979 2 3327 1811 +1516 everstake 0xb26f9666... Titan Relay
13524437 12 3575 2060 +1515 infstones_lido 0xb67eaa5e... BloXroute Regulated
13523856 5 3397 1886 +1511 0xb26f9666... BloXroute Max Profit
13522479 5 3395 1886 +1509 blockdaemon 0x8a850621... Ultra Sound
13521651 1 3293 1787 +1506 blockdaemon_lido 0x853b0078... Ultra Sound
13523416 7 3442 1936 +1506 everstake 0x8527d16c... Ultra Sound
13518850 2 3315 1811 +1504 everstake 0x8527d16c... Ultra Sound
13524424 5 3388 1886 +1502 blockdaemon 0xb26f9666... Titan Relay
13521699 18 3711 2209 +1502 0x8527d16c... Ultra Sound
13519229 3 3335 1836 +1499 blockscape_lido 0x855b00e6... Flashbots
13519566 2 3309 1811 +1498 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13521658 8 3457 1961 +1496 everstake 0xb26f9666... Titan Relay
13523331 0 3257 1762 +1495 everstake 0xb26f9666... Titan Relay
13523590 1 3278 1787 +1491 everstake 0x88a53ec4... BloXroute Max Profit
13521011 1 3274 1787 +1487 blockdaemon 0x853b0078... Ultra Sound
13519443 3 3322 1836 +1486 everstake 0x853b0078... Agnostic Gnosis
13518557 1 3272 1787 +1485 luno 0x853b0078... Ultra Sound
13521931 13 3563 2085 +1478 blockdaemon 0xb26f9666... Titan Relay
13520479 0 3239 1762 +1477 luno 0xb211df49... Ultra Sound
13522639 9 3462 1985 +1477 0xb67eaa5e... Titan Relay
13520160 11 3509 2035 +1474 stakingfacilities_lido 0xac23f8cc... BloXroute Max Profit
13522191 13 3558 2085 +1473 blockdaemon 0x857b0038... Ultra Sound
13524402 4 3333 1861 +1472 blockdaemon 0xb26f9666... Titan Relay
13523466 6 3381 1911 +1470 0x850b00e0... BloXroute Max Profit
13518918 4 3329 1861 +1468 blockscape_lido Local Local
13525169 3 3303 1836 +1467 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13520217 7 3402 1936 +1466 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13520384 6 3377 1911 +1466 stakingfacilities_lido 0x8527d16c... Ultra Sound
13523462 2 3277 1811 +1466 blockscape_lido Local Local
13521133 1 3249 1787 +1462 0x853b0078... Ultra Sound
13518844 9 3447 1985 +1462 whale_0xdd6c 0xb26f9666... Titan Relay
13524972 7 3397 1936 +1461 everstake 0x8527d16c... Ultra Sound
13521768 3 3297 1836 +1461 blockdaemon_lido 0x853b0078... Ultra Sound
13522003 1 3247 1787 +1460 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13521582 8 3419 1961 +1458 everstake 0x856b0004... BloXroute Max Profit
13518053 6 3364 1911 +1453 everstake 0x853b0078... BloXroute Max Profit
13524775 4 3312 1861 +1451 0xb26f9666... Titan Relay
13521485 0 3211 1762 +1449 stakingfacilities_lido 0x852b0070... Agnostic Gnosis
13521312 7 3384 1936 +1448 bitstamp 0x8527d16c... Ultra Sound
13519815 1 3234 1787 +1447 everstake 0x8527d16c... Ultra Sound
13518463 4 3304 1861 +1443 blockdaemon 0xb26f9666... Titan Relay
13522305 6 3353 1911 +1442 blockdaemon 0x88510a78... BloXroute Regulated
13520332 1 3228 1787 +1441 0x853b0078... Ultra Sound
13524999 4 3302 1861 +1441 blockscape_lido Local Local
13523759 0 3202 1762 +1440 everstake 0x88a53ec4... BloXroute Regulated
13518523 3 3274 1836 +1438 everstake 0x853b0078... BloXroute Max Profit
13524670 2 3249 1811 +1438 0x853b0078... Ultra Sound
13523344 1 3224 1787 +1437 blockdaemon 0x853b0078... Ultra Sound
13524108 7 3373 1936 +1437 everstake 0x853b0078... Aestus
13520878 12 3495 2060 +1435 blockdaemon 0x8a850621... Titan Relay
13524225 4 3295 1861 +1434 blockdaemon_lido 0x91b123d8... BloXroute Regulated
13518154 4 3295 1861 +1434 0x853b0078... BloXroute Max Profit
13519216 2 3245 1811 +1434 0xb67eaa5e... BloXroute Regulated
13524822 8 3389 1961 +1428 0xb26f9666... BloXroute Max Profit
13521500 11 3463 2035 +1428 everstake 0x8527d16c... Ultra Sound
13522116 4 3288 1861 +1427 blockscape_lido Local Local
13519937 3 3263 1836 +1427 0x850b00e0... BloXroute Max Profit
13521702 5 3312 1886 +1426 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13523132 6 3333 1911 +1422 blockdaemon_lido 0x856b0004... Ultra Sound
13518308 12 3482 2060 +1422 blockdaemon_lido 0x850b00e0... BloXroute Max Profit
13519210 5 3307 1886 +1421 luno 0x853b0078... Ultra Sound
13524616 7 3355 1936 +1419 everstake 0x8527d16c... Ultra Sound
13524581 7 3352 1936 +1416 blockdaemon 0xb26f9666... Titan Relay
13522184 5 3302 1886 +1416 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13525092 8 3376 1961 +1415 everstake 0x853b0078... Ultra Sound
13520230 0 3176 1762 +1414 everstake 0x91a8729e... Aestus
13524053 7 3350 1936 +1414 0xb7c5e609... BloXroute Max Profit
13525152 6 3325 1911 +1414 rocklogicgmbh_lido 0x860d4173... BloXroute Max Profit
13518556 6 3325 1911 +1414 0x91b123d8... BloXroute Regulated
13522922 5 3300 1886 +1414 0x88510a78... BloXroute Regulated
13521132 11 3446 2035 +1411 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13521487 0 3172 1762 +1410 everstake 0x8527d16c... Ultra Sound
13519770 2 3218 1811 +1407 0x857b0038... Ultra Sound
13519599 9 3392 1985 +1407 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13521652 6 3317 1911 +1406 everstake 0x856b0004... Agnostic Gnosis
13519382 6 3316 1911 +1405 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13519146 2 3209 1811 +1398 blockdaemon 0x853b0078... Ultra Sound
13524093 20 3656 2259 +1397 blockdaemon 0x857b0038... Ultra Sound
13521661 6 3306 1911 +1395 everstake 0xb26f9666... Titan Relay
13524302 15 3528 2135 +1393 blockdaemon 0x850b00e0... BloXroute Regulated
13518888 1 3178 1787 +1391 figment 0x88a53ec4... BloXroute Max Profit
13519315 2 3201 1811 +1390 0x850b00e0... BloXroute Regulated
13524406 7 3325 1936 +1389 blockdaemon 0xb26f9666... Titan Relay
13519575 13 3468 2085 +1383 0x850b00e0... BloXroute Regulated
13518686 0 3144 1762 +1382 everstake 0x91a8729e... Aestus
13524899 6 3292 1911 +1381 everstake 0x853b0078... Ultra Sound
13523296 9 3365 1985 +1380 rocklogicgmbh_lido 0x853b0078... Aestus
13518100 12 3437 2060 +1377 everstake 0x8527d16c... Ultra Sound
13518159 6 3286 1911 +1375 everstake 0xb26f9666... Titan Relay
13524427 1 3161 1787 +1374 0x82c466b9... Flashbots
13524343 0 3134 1762 +1372 0x805e28e6... BloXroute Max Profit
13524794 2 3180 1811 +1369 0xb67eaa5e... BloXroute Regulated
13523343 16 3528 2159 +1369 blockdaemon 0x8a850621... Ultra Sound
13522145 0 3130 1762 +1368 everstake 0xb26f9666... Titan Relay
13525083 3 3200 1836 +1364 everstake 0xb67eaa5e... BloXroute Regulated
13518552 1 3149 1787 +1362 0xb67eaa5e... BloXroute Max Profit
13519401 13 3447 2085 +1362 blockdaemon_lido 0xb67eaa5e... Titan Relay
13524889 6 3272 1911 +1361 0x88a53ec4... BloXroute Regulated
13524301 8 3320 1961 +1359 0x88857150... Ultra Sound
13524559 0 3121 1762 +1359 0x852b0070... Agnostic Gnosis
13519617 9 3344 1985 +1359 0xb26f9666... Ultra Sound
13520817 8 3319 1961 +1358 blockdaemon_lido 0xa230e2cf... BloXroute Regulated
13522648 9 3339 1985 +1354 everstake 0xb26f9666... Titan Relay
13518425 7 3289 1936 +1353 blockdaemon 0x850b00e0... BloXroute Regulated
13522541 6 3264 1911 +1353 0x88a53ec4... BloXroute Max Profit
13520205 0 3114 1762 +1352 everstake 0x805e28e6... Ultra Sound
13521365 9 3337 1985 +1352 0xb26f9666... Titan Relay
13521441 8 3312 1961 +1351 p2porg 0x88a53ec4... BloXroute Max Profit
13518478 2 3162 1811 +1351 0x856b0004... Aestus
13523880 8 3311 1961 +1350 gateway.fmas_lido 0x8db2a99d... BloXroute Max Profit
13518879 9 3335 1985 +1350 everstake 0xb26f9666... Titan Relay
13523684 0 3110 1762 +1348 everstake 0x852b0070... Aestus
13522887 0 3108 1762 +1346 everstake 0x851b00b1... BloXroute Max Profit
13520698 10 3356 2010 +1346 blockdaemon 0x850b00e0... BloXroute Regulated
13521274 7 3277 1936 +1341 0x88a53ec4... BloXroute Regulated
13524005 1 3126 1787 +1339 0x857b0038... Ultra Sound
13519139 2 3150 1811 +1339 blockscape_lido 0x856b0004... Ultra Sound
13522368 9 3324 1985 +1339 0x850b00e0... BloXroute Max Profit
13522044 7 3274 1936 +1338 everstake 0x856b0004... BloXroute Max Profit
13519295 4 3199 1861 +1338 p2porg 0x853b0078... Aestus
13519478 4 3198 1861 +1337 everstake 0x823e0146... Flashbots
13524248 8 3297 1961 +1336 0xb26f9666... Titan Relay
13519691 3 3172 1836 +1336 ether.fi 0xb67eaa5e... EthGas
13521121 1 3117 1787 +1330 p2porg 0x823e0146... Flashbots
13519597 5 3213 1886 +1327 0xb26f9666... BloXroute Regulated
13524019 6 3237 1911 +1326 blockdaemon_lido 0x8527d16c... Ultra Sound
13520769 4 3187 1861 +1326 everstake 0x8527d16c... Ultra Sound
13519156 10 3335 2010 +1325 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13519850 1 3111 1787 +1324 0x8527d16c... Ultra Sound
13522119 5 3209 1886 +1323 everstake 0x88a53ec4... BloXroute Regulated
13525175 2 3131 1811 +1320 0x88510a78... Flashbots
13519669 1 3104 1787 +1317 p2porg 0x856b0004... Ultra Sound
13525155 2 3128 1811 +1317 everstake 0xb26f9666... Titan Relay
13522544 8 3277 1961 +1316 0x850b00e0... BloXroute Regulated
13520836 8 3277 1961 +1316 everstake 0xb67eaa5e... BloXroute Regulated
13521478 5 3202 1886 +1316 everstake 0xb67eaa5e... BloXroute Max Profit
13524682 3 3152 1836 +1316 0x850b00e0... BloXroute Max Profit
13519417 2 3127 1811 +1316 mantle 0x8527d16c... Ultra Sound
13521186 7 3251 1936 +1315 mantle 0x856b0004... Ultra Sound
13518589 2 3125 1811 +1314 0x856b0004... Agnostic Gnosis
13519073 0 3075 1762 +1313 abyss_finance 0xb26f9666... BloXroute Max Profit
13522957 0 3074 1762 +1312 0x852b0070... Agnostic Gnosis
13521403 9 3297 1985 +1312 0x850b00e0... BloXroute Regulated
13518646 5 3197 1886 +1311 gateway.fmas_lido 0xb67eaa5e... BloXroute Max Profit
13521756 5 3197 1886 +1311 0x88857150... Ultra Sound
13522165 4 3172 1861 +1311 everstake 0xb26f9666... Titan Relay
13524702 9 3296 1985 +1311 0x8db2a99d... BloXroute Max Profit
13520489 13 3395 2085 +1310 everstake 0x8db2a99d... BloXroute Max Profit
13524134 1 3095 1787 +1308 everstake 0xb26f9666... Aestus
13523576 7 3244 1936 +1308 0xb26f9666... Titan Relay
13518335 0 3069 1762 +1307 gateway.fmas_lido 0x88a53ec4... BloXroute Max Profit
13522267 0 3069 1762 +1307 gateway.fmas_lido 0x856b0004... Ultra Sound
13522193 5 3192 1886 +1306 0xb67eaa5e... BloXroute Regulated
13518583 4 3167 1861 +1306 everstake 0xb26f9666... Titan Relay
13523904 9 3290 1985 +1305 everstake 0xb67eaa5e... BloXroute Max Profit
13523950 10 3314 2010 +1304 blockdaemon_lido 0x855b00e6... Ultra Sound
13525044 5 3188 1886 +1302 0x853b0078... Aestus
13520210 0 3061 1762 +1299 ether.fi 0x852b0070... Aestus
13519515 2 3110 1811 +1299 everstake 0x8db2a99d... BloXroute Max Profit
13524785 6 3209 1911 +1298 everstake 0xb67eaa5e... BloXroute Max Profit
13525072 1 3084 1787 +1297 ether.fi 0x856b0004... Agnostic Gnosis
13518882 6 3208 1911 +1297 0x850b00e0... BloXroute Regulated
13524759 14 3405 2110 +1295 0x853b0078... Ultra Sound
13523663 3 3131 1836 +1295 p2porg 0x823e0146... BloXroute Max Profit
13519626 2 3105 1811 +1294 p2porg 0x8db2a99d... Flashbots
13520018 7 3229 1936 +1293 whale_0x23be 0xac23f8cc... Flashbots
13524373 0 3054 1762 +1292 everstake 0xb26f9666... Titan Relay
13522725 5 3176 1886 +1290 ether.fi 0xb67eaa5e... BloXroute Max Profit
13523133 10 3300 2010 +1290 luno 0x88510a78... BloXroute Regulated
13524665 6 3199 1911 +1288 0x850b00e0... BloXroute Regulated
13519604 6 3197 1911 +1286 0xb26f9666... BloXroute Regulated
13525027 1 3071 1787 +1284 0x8a850621... Titan Relay
13519277 1 3070 1787 +1283 p2porg 0x853b0078... BloXroute Max Profit
13519934 1 3070 1787 +1283 coinbase 0x8a850621... Ultra Sound
13523256 6 3194 1911 +1283 p2porg 0x8527d16c... Ultra Sound
13523591 2 3094 1811 +1283 0x856b0004... Ultra Sound
13524250 1 3068 1787 +1281 gateway.fmas_lido 0x88857150... Ultra Sound
13519517 1 3067 1787 +1280 0x860d4173... BloXroute Max Profit
13524544 5 3166 1886 +1280 everstake 0xb67eaa5e... BloXroute Regulated
13518050 1 3066 1787 +1279 0xac23f8cc... Flashbots
13524545 1 3065 1787 +1278 everstake 0x853b0078... BloXroute Max Profit
13525142 1 3065 1787 +1278 mantle 0xb7c5e609... BloXroute Max Profit
13524586 2 3089 1811 +1278 p2porg 0xac23f8cc... BloXroute Max Profit
13520275 1 3064 1787 +1277 0x856b0004... Agnostic Gnosis
13524540 0 3039 1762 +1277 everstake 0xb26f9666... Titan Relay
13520871 0 3039 1762 +1277 gateway.fmas_lido 0x91a8729e... BloXroute Max Profit
13518434 6 3187 1911 +1276 abyss_finance 0x8527d16c... Ultra Sound
13521895 6 3187 1911 +1276 mantle 0x8527d16c... Ultra Sound
13524692 4 3137 1861 +1276 0x8db2a99d... BloXroute Max Profit
13518707 2 3087 1811 +1276 ether.fi 0x8527d16c... Ultra Sound
13521871 0 3037 1762 +1275 0x8527d16c... Ultra Sound
13524821 6 3186 1911 +1275 0xb67eaa5e... BloXroute Regulated
13524129 1 3061 1787 +1274 0x8a850621... Titan Relay
13520995 1 3061 1787 +1274 0x856b0004... Ultra Sound
13523431 1 3060 1787 +1273 0x823e0146... BloXroute Max Profit
13520692 1 3060 1787 +1273 gateway.fmas_lido 0x823e0146... Flashbots
13518186 3 3108 1836 +1272 gateway.fmas_lido 0x8527d16c... Ultra Sound
13522384 17 3456 2184 +1272 0x88a53ec4... BloXroute Regulated
Total anomalies: 278

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})