Fri, Jan 23, 2026

Propagation anomalies - 2026-01-23

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-23' AND slot_start_date_time < '2026-01-23'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-23' AND slot_start_date_time < '2026-01-23'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-23' AND slot_start_date_time < '2026-01-23'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-23' AND slot_start_date_time < '2026-01-23'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-23' AND slot_start_date_time < '2026-01-23'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-23' AND slot_start_date_time < '2026-01-23'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-23' AND slot_start_date_time < '2026-01-23'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-23' AND slot_start_date_time < '2026-01-23'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,180
MEV blocks: 6,702 (93.3%)
Local blocks: 478 (6.7%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1796.4 + 19.31 × blob_count (R² = 0.017)
Residual σ = 650.0ms
Anomalies (>2σ slow): 249 (3.5%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13525855 6 7198 1912 +5286 whale_0x3212 Local Local
13530341 0 4928 1796 +3132 ether.fi Local Local
13530148 0 4754 1796 +2958 ether.fi Local Local
13526846 0 4654 1796 +2858 Local Local
13526684 0 4515 1796 +2719 whale_0xba8f Local Local
13527904 0 4444 1796 +2648 Local Local
13529504 0 4105 1796 +2309 ether.fi Local Local
13525228 1 4061 1816 +2245 lido 0xb26f9666... Ultra Sound
13531997 0 3973 1796 +2177 everstake Local Local
13531671 0 3964 1796 +2168 solo_stakers Local Local
13525696 0 3961 1796 +2165 upbit Local Local
13527751 0 3844 1796 +2048 revolut Local Local
13531323 0 3822 1796 +2026 everstake Local Local
13527180 0 3760 1796 +1964 figment Local Local
13531655 0 3687 1796 +1891 blockdaemon_lido Local Local
13532032 3 3712 1854 +1858 blockdaemon_lido 0x853b0078... Ultra Sound
13531404 2 3665 1835 +1830 0x850b00e0... BloXroute Max Profit
13529550 6 3731 1912 +1819 blockdaemon 0x8527d16c... Ultra Sound
13526954 2 3648 1835 +1813 kraken 0xb26f9666... EthGas
13528160 2 3636 1835 +1801 luno 0x860d4173... BloXroute Regulated
13531584 1 3608 1816 +1792 0x850b00e0... BloXroute Regulated
13531872 2 3617 1835 +1782 everstake 0xb26f9666... Titan Relay
13528919 1 3569 1816 +1753 blockdaemon 0xb26f9666... Titan Relay
13532004 3 3606 1854 +1752 0x853b0078... Ultra Sound
13529630 1 3554 1816 +1738 luno 0x853b0078... Ultra Sound
13530272 0 3527 1796 +1731 everstake 0xb26f9666... Titan Relay
13531862 2 3564 1835 +1729 figment 0x856b0004... Ultra Sound
13531995 4 3602 1874 +1728 blockdaemon 0xb26f9666... Titan Relay
13528955 3 3578 1854 +1724 0x8527d16c... Ultra Sound
13531136 0 3515 1796 +1719 0x853b0078... Ultra Sound
13532221 0 3512 1796 +1716 0x91a8729e... Ultra Sound
13531654 15 3799 2086 +1713 blockdaemon_lido 0x850b00e0... Ultra Sound
13527204 6 3620 1912 +1708 0x850b00e0... BloXroute Max Profit
13531773 6 3620 1912 +1708 figment 0x88a53ec4... BloXroute Regulated
13530860 6 3609 1912 +1697 0xb26f9666... BloXroute Regulated
13530711 2 3530 1835 +1695 figment 0x8527d16c... Ultra Sound
13527498 1 3510 1816 +1694 blockdaemon 0x850b00e0... BloXroute Regulated
13529169 7 3610 1932 +1678 blockdaemon 0x88857150... Ultra Sound
13528495 1 3489 1816 +1673 blockdaemon 0xb26f9666... Titan Relay
13526335 4 3545 1874 +1671 blockdaemon_lido 0xb7c5e609... BloXroute Regulated
13527863 5 3563 1893 +1670 blockdaemon 0xb26f9666... Titan Relay
13527367 7 3601 1932 +1669 0xb26f9666... BloXroute Regulated
13527525 1 3482 1816 +1666 blockdaemon_lido 0xb67eaa5e... Titan Relay
13531583 14 3730 2067 +1663 binance 0x8a850621... Titan Relay
13529315 16 3766 2105 +1661 0x855b00e6... BloXroute Max Profit
13526350 6 3568 1912 +1656 blockdaemon 0x8527d16c... Ultra Sound
13531214 7 3585 1932 +1653 blockdaemon 0xb26f9666... Titan Relay
13529852 0 3442 1796 +1646 everstake 0xb26f9666... Titan Relay
13532339 9 3614 1970 +1644 ether.fi 0xb26f9666... EthGas
13530285 8 3581 1951 +1630 figment 0x88a53ec4... BloXroute Regulated
13530318 8 3574 1951 +1623 everstake 0xb26f9666... Titan Relay
13527826 0 3412 1796 +1616 blockdaemon_lido 0xb67eaa5e... Titan Relay
13525398 4 3482 1874 +1608 everstake 0x850b00e0... BloXroute Max Profit
13528709 5 3500 1893 +1607 lido 0x8db2a99d... Flashbots
13531244 10 3593 1989 +1604 0xb26f9666... Titan Relay
13529714 3 3456 1854 +1602 bitstamp 0x856b0004... Ultra Sound
13525509 14 3666 2067 +1599 blockdaemon 0xb26f9666... Titan Relay
13530901 6 3511 1912 +1599 0x8527d16c... Ultra Sound
13531424 0 3390 1796 +1594 gateway.fmas_lido 0x823e0146... BloXroute Max Profit
13526208 1 3403 1816 +1587 everstake 0xb7c5beef... Titan Relay
13527335 10 3567 1989 +1578 revolut 0x8527d16c... Ultra Sound
13528232 4 3449 1874 +1575 blockdaemon_lido 0xb67eaa5e... Titan Relay
13526560 16 3680 2105 +1575 whale_0xdd6c 0xb26f9666... Titan Relay
13528470 2 3404 1835 +1569 blockdaemon_lido 0xb67eaa5e... Titan Relay
13531312 4 3434 1874 +1560 blockdaemon 0x8a850621... Titan Relay
13531151 7 3490 1932 +1558 everstake 0xb26f9666... Titan Relay
13525970 5 3451 1893 +1558 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13528011 2 3392 1835 +1557 everstake 0xb26f9666... Titan Relay
13525897 4 3428 1874 +1554 0x8a850621... Titan Relay
13531187 17 3676 2125 +1551 0x823e0146... BloXroute Max Profit
13531101 2 3384 1835 +1549 everstake 0x853b0078... BloXroute Max Profit
13531399 1 3364 1816 +1548 0x8a850621... Ultra Sound
13526008 4 3420 1874 +1546 everstake 0xb26f9666... Titan Relay
13527670 13 3593 2047 +1546 0x91b123d8... BloXroute Regulated
13530756 1 3357 1816 +1541 blockdaemon_lido 0x88857150... Ultra Sound
13528029 6 3453 1912 +1541 everstake 0x8db2a99d... Flashbots
13525817 2 3373 1835 +1538 luno 0xb26f9666... Titan Relay
13526810 0 3329 1796 +1533 everstake 0xb26f9666... Titan Relay
13529578 8 3482 1951 +1531 csm_operator346_lido 0x8527d16c... Ultra Sound
13527223 0 3324 1796 +1528 0xa0366397... Flashbots
13528266 1 3332 1816 +1516 blockdaemon_lido 0xb67eaa5e... Titan Relay
13529430 7 3447 1932 +1515 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13527437 6 3427 1912 +1515 everstake 0x88a53ec4... BloXroute Max Profit
13527475 10 3503 1989 +1514 everstake 0xb26f9666... Titan Relay
13525918 3 3367 1854 +1513 blockdaemon_lido 0xb26f9666... Titan Relay
13528061 5 3404 1893 +1511 0xb26f9666... BloXroute Max Profit
13531826 1 3326 1816 +1510 csm_operator346_lido 0x853b0078... Agnostic Gnosis
13525887 5 3403 1893 +1510 everstake 0x8db2a99d... Flashbots
13529491 0 3306 1796 +1510 everstake 0x823e0146... Flashbots
13529024 1 3322 1816 +1506 everstake 0x860d4173... BloXroute Max Profit
13529576 7 3434 1932 +1502 everstake 0xb26f9666... Titan Relay
13528726 4 3375 1874 +1501 whale_0xc541 0x88857150... Ultra Sound
13531349 1 3313 1816 +1497 blockdaemon_lido 0xb26f9666... Titan Relay
13531747 1 3308 1816 +1492 0xb26f9666... BloXroute Max Profit
13529800 4 3365 1874 +1491 0x857b0038... Ultra Sound
13531199 1 3307 1816 +1491 0xb67eaa5e... BloXroute Regulated
13531212 3 3342 1854 +1488 0x857b0038... Ultra Sound
13525206 4 3361 1874 +1487 everstake 0xb26f9666... Titan Relay
13528380 1 3299 1816 +1483 blockdaemon_lido 0xb26f9666... Titan Relay
13531563 2 3317 1835 +1482 blockdaemon 0xb26f9666... Titan Relay
13529815 11 3489 2009 +1480 everstake 0x850b00e0... BloXroute Regulated
13527184 0 3273 1796 +1477 everstake 0x8527d16c... Ultra Sound
13525605 7 3408 1932 +1476 blockdaemon 0xb67eaa5e... BloXroute Regulated
13527881 2 3311 1835 +1476 blockdaemon_lido 0xb26f9666... Titan Relay
13531044 3 3326 1854 +1472 blockdaemon 0xb26f9666... Titan Relay
13528739 1 3287 1816 +1471 blockdaemon_lido 0xb26f9666... Titan Relay
13530812 4 3340 1874 +1466 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13525686 5 3356 1893 +1463 everstake 0x8527d16c... Ultra Sound
13531721 12 3485 2028 +1457 ether.fi 0xb26f9666... BloXroute Regulated
13525661 3 3311 1854 +1457 blockdaemon 0x850b00e0... BloXroute Regulated
13528371 1 3271 1816 +1455 blockdaemon_lido 0xb26f9666... Titan Relay
13528616 0 3249 1796 +1453 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13531178 6 3364 1912 +1452 0x8a850621... Ultra Sound
13528857 0 3248 1796 +1452 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13531804 9 3417 1970 +1447 everstake 0xb67eaa5e... BloXroute Max Profit
13529153 7 3377 1932 +1445 everstake 0x8527d16c... Ultra Sound
13525888 6 3355 1912 +1443 gateway.fmas_lido 0x823e0146... Flashbots
13527681 4 3316 1874 +1442 blockdaemon 0xb26f9666... Titan Relay
13525339 9 3411 1970 +1441 everstake 0xb26f9666... Titan Relay
13526048 1 3254 1816 +1438 stakefish 0x856b0004... Agnostic Gnosis
13528901 1 3253 1816 +1437 blockdaemon 0x8a850621... BloXroute Regulated
13529978 6 3348 1912 +1436 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13525310 4 3308 1874 +1434 blockdaemon_lido 0x8527d16c... Ultra Sound
13531801 2 3269 1835 +1434 everstake 0x856b0004... Agnostic Gnosis
13530913 0 3230 1796 +1434 blockdaemon 0x8527d16c... Ultra Sound
13525494 1 3245 1816 +1429 everstake 0x8527d16c... Ultra Sound
13527843 2 3263 1835 +1428 ether.fi 0xb26f9666... Aestus
13526635 9 3397 1970 +1427 everstake 0xb26f9666... Titan Relay
13530143 0 3221 1796 +1425 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13531274 0 3220 1796 +1424 everstake 0xb26f9666... Titan Relay
13526365 10 3412 1989 +1423 everstake 0x8527d16c... Ultra Sound
13526985 11 3431 2009 +1422 everstake 0x8527d16c... Ultra Sound
13529128 8 3372 1951 +1421 everstake 0xac23f8cc... BloXroute Max Profit
13531311 10 3410 1989 +1421 0x88857150... Ultra Sound
13528265 12 3446 2028 +1418 blockdaemon_lido 0xb67eaa5e... Titan Relay
13527934 3 3271 1854 +1417 blockdaemon_lido 0x860d4173... BloXroute Regulated
13527819 4 3289 1874 +1415 blockdaemon 0x88a53ec4... BloXroute Regulated
13526150 6 3323 1912 +1411 blockdaemon_lido 0x860d4173... BloXroute Regulated
13529976 0 3207 1796 +1411 revolut 0x99dbe3e8... Ultra Sound
13528859 4 3282 1874 +1408 0x88a53ec4... BloXroute Regulated
13526701 1 3223 1816 +1407 everstake 0xb26f9666... Titan Relay
13529713 8 3358 1951 +1407 0x853b0078... Ultra Sound
13530548 3 3261 1854 +1407 0xb26f9666... Titan Relay
13530020 5 3299 1893 +1406 0x850b00e0... BloXroute Regulated
13525199 8 3355 1951 +1404 blockdaemon_lido 0xb26f9666... Titan Relay
13525824 7 3335 1932 +1403 p2porg 0x8527d16c... Ultra Sound
13529660 18 3547 2144 +1403 blockdaemon 0x850b00e0... BloXroute Regulated
13530790 4 3275 1874 +1401 p2porg 0xb67eaa5e... BloXroute Max Profit
13525844 6 3311 1912 +1399 blockdaemon 0xb67eaa5e... BloXroute Regulated
13532218 1 3213 1816 +1397 everstake 0xb26f9666... Titan Relay
13526016 10 3386 1989 +1397 0xb26f9666... BloXroute Regulated
13527048 1 3212 1816 +1396 everstake 0xb26f9666... Titan Relay
13527981 3 3249 1854 +1395 everstake 0x853b0078... Agnostic Gnosis
13528473 17 3519 2125 +1394 0x823e0146... BloXroute Max Profit
13529646 0 3190 1796 +1394 blockdaemon_lido 0x853b0078... Ultra Sound
13528062 4 3267 1874 +1393 0xb26f9666... BloXroute Max Profit
13527929 1 3208 1816 +1392 0x856b0004... Agnostic Gnosis
13528083 6 3304 1912 +1392 0x853b0078... Ultra Sound
13527435 1 3206 1816 +1390 blockdaemon_lido 0xb26f9666... Titan Relay
13529046 8 3341 1951 +1390 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13532353 6 3301 1912 +1389 blockdaemon_lido 0xb26f9666... Titan Relay
13531198 6 3301 1912 +1389 blockdaemon_lido 0xb26f9666... Titan Relay
13530554 10 3376 1989 +1387 0xb26f9666... Titan Relay
13529858 7 3318 1932 +1386 luno 0xb26f9666... Titan Relay
13531332 6 3297 1912 +1385 revolut 0x8527d16c... Ultra Sound
13525719 2 3218 1835 +1383 gateway.fmas_lido 0xb67eaa5e... BloXroute Max Profit
13529225 6 3295 1912 +1383 0x88a53ec4... BloXroute Max Profit
13527643 3 3237 1854 +1383 0x860d4173... BloXroute Regulated
13531707 7 3312 1932 +1380 p2porg 0x88a53ec4... BloXroute Regulated
13529926 1 3195 1816 +1379 0x88a53ec4... BloXroute Max Profit
13532016 12 3407 2028 +1379 everstake 0x8527d16c... Ultra Sound
13526821 7 3310 1932 +1378 0xb67eaa5e... BloXroute Max Profit
13531825 5 3268 1893 +1375 figment 0x88857150... Ultra Sound
13526856 7 3306 1932 +1374 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13531008 10 3363 1989 +1374 p2porg 0xb26f9666... BloXroute Max Profit
13530808 4 3247 1874 +1373 everstake 0x856b0004... Agnostic Gnosis
13529620 1 3189 1816 +1373 bitstamp 0x853b0078... Ultra Sound
13527115 0 3169 1796 +1373 everstake 0xb26f9666... Titan Relay
13532225 2 3207 1835 +1372 stakingfacilities_lido 0x853b0078... Agnostic Gnosis
13526319 6 3283 1912 +1371 everstake 0xb26f9666... Titan Relay
13527573 6 3283 1912 +1371 everstake 0x853b0078... Agnostic Gnosis
13526977 7 3302 1932 +1370 blockdaemon_lido 0xa230e2cf... BloXroute Regulated
13529626 0 3166 1796 +1370 0x852b0070... Aestus
13531713 10 3359 1989 +1370 coinbase 0x8a850621... Ultra Sound
13529766 0 3165 1796 +1369 solo_stakers 0x856b0004... Aestus
13529596 5 3261 1893 +1368 0x850b00e0... BloXroute Regulated
13527894 9 3337 1970 +1367 blockdaemon 0x853b0078... Ultra Sound
13525934 6 3279 1912 +1367 0x850b00e0... BloXroute Regulated
13526303 6 3277 1912 +1365 0x855b00e6... BloXroute Max Profit
13529190 1 3179 1816 +1363 0xb67eaa5e... BloXroute Regulated
13528225 1 3179 1816 +1363 everstake 0xb26f9666... Titan Relay
13529727 7 3294 1932 +1362 0x850b00e0... BloXroute Max Profit
13530953 7 3292 1932 +1360 blockdaemon 0x8527d16c... Ultra Sound
13531500 4 3232 1874 +1358 everstake 0x8527d16c... Ultra Sound
13528664 1 3174 1816 +1358 0x8a850621... Ultra Sound
13530205 0 3154 1796 +1358 0xb26f9666... Titan Relay
13528612 1 3171 1816 +1355 0x850b00e0... BloXroute Regulated
13529622 8 3303 1951 +1352 revolut 0x8527d16c... Ultra Sound
13525266 0 3147 1796 +1351 p2porg 0x91a8729e... BloXroute Max Profit
13527378 2 3185 1835 +1350 0x855b00e6... BloXroute Max Profit
13527493 1 3162 1816 +1346 gateway.fmas_lido 0x88a53ec4... BloXroute Regulated
13527147 18 3490 2144 +1346 0x857b0038... Ultra Sound
13528496 14 3412 2067 +1345 0xb7c5e609... Flashbots
13531081 5 3236 1893 +1343 0xb26f9666... Titan Relay
13526358 6 3252 1912 +1340 ether.fi 0xb67eaa5e... BloXroute Max Profit
13530684 11 3348 2009 +1339 blockdaemon_lido 0x8527d16c... Ultra Sound
13530486 3 3190 1854 +1336 everstake 0x88a53ec4... BloXroute Max Profit
13525366 16 3440 2105 +1335 bitstamp 0x8527d16c... Ultra Sound
13530441 7 3265 1932 +1333 blockdaemon_lido 0x853b0078... Ultra Sound
13526288 1 3149 1816 +1333 0x88a53ec4... BloXroute Max Profit
13531282 6 3245 1912 +1333 0xb67eaa5e... BloXroute Regulated
13531784 3 3184 1854 +1330 0x823e0146... Flashbots
13530433 0 3126 1796 +1330 everstake 0x853b0078... Aestus
13528999 4 3203 1874 +1329 ether.fi 0xb67eaa5e... BloXroute Regulated
13528164 2 3163 1835 +1328 bitstamp 0x853b0078... Ultra Sound
13526462 9 3298 1970 +1328 0x8db2a99d... BloXroute Max Profit
13529610 6 3239 1912 +1327 0xb26f9666... Aestus
13529711 0 3123 1796 +1327 0xb67eaa5e... BloXroute Regulated
13531234 1 3141 1816 +1325 0x88a53ec4... BloXroute Regulated
13532114 6 3237 1912 +1325 blockdaemon 0xb26f9666... Titan Relay
13530001 9 3293 1970 +1323 0x850b00e0... BloXroute Regulated
13530770 18 3465 2144 +1321 0x88857150... Ultra Sound
13531875 2 3156 1835 +1321 stakingfacilities_lido 0xac23f8cc... Flashbots
13530368 1 3136 1816 +1320 everstake 0xb26f9666... Titan Relay
13528034 1 3136 1816 +1320 everstake 0x88a53ec4... BloXroute Max Profit
13527120 11 3328 2009 +1319 0x8527d16c... Ultra Sound
13530352 12 3347 2028 +1319 0xb67eaa5e... BloXroute Regulated
13531284 6 3231 1912 +1319 Local Local
13530275 6 3231 1912 +1319 0x88a53ec4... BloXroute Max Profit
13531393 0 3114 1796 +1318 everstake 0x88a53ec4... BloXroute Max Profit
13531049 1 3133 1816 +1317 p2porg 0xb67eaa5e... BloXroute Regulated
13528336 6 3229 1912 +1317 p2porg 0x853b0078... Titan Relay
13529405 8 3265 1951 +1314 0x850b00e0... BloXroute Regulated
13527035 3 3168 1854 +1314 blockscape_lido 0xb67eaa5e... BloXroute Max Profit
13527626 1 3129 1816 +1313 0xb26f9666... Titan Relay
13527111 8 3263 1951 +1312 0x8527d16c... Ultra Sound
13529849 2 3146 1835 +1311 p2porg 0x853b0078... Aestus
13531632 6 3223 1912 +1311 0x850b00e0... BloXroute Regulated
13530636 0 3107 1796 +1311 everstake 0xb26f9666... Titan Relay
13530147 7 3241 1932 +1309 kelp 0x88a53ec4... BloXroute Regulated
13527923 1 3124 1816 +1308 everstake 0x823e0146... Flashbots
13528096 1 3121 1816 +1305 everstake 0xb26f9666... Titan Relay
13528892 6 3217 1912 +1305 0x823e0146... Flashbots
13525521 10 3293 1989 +1304 everstake 0xb26f9666... Titan Relay
13526753 1 3118 1816 +1302 everstake 0x853b0078... Aestus
13531630 9 3272 1970 +1302 whale_0x7c58 0x88a53ec4... BloXroute Max Profit
13531985 10 3291 1989 +1302 0xb67eaa5e... BloXroute Max Profit
13526729 7 3233 1932 +1301 everstake 0xb26f9666... Titan Relay
13528242 5 3194 1893 +1301 solo_stakers 0x860d4173... Ultra Sound
Total anomalies: 249

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})