Sun, Jan 25, 2026

Propagation anomalies - 2026-01-25

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-25' AND slot_start_date_time < '2026-01-25'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-25' AND slot_start_date_time < '2026-01-25'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-25' AND slot_start_date_time < '2026-01-25'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-25' AND slot_start_date_time < '2026-01-25'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-25' AND slot_start_date_time < '2026-01-25'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-25' AND slot_start_date_time < '2026-01-25'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-25' AND slot_start_date_time < '2026-01-25'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-25' AND slot_start_date_time < '2026-01-25'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,180
MEV blocks: 6,754 (94.1%)
Local blocks: 426 (5.9%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1765.9 + 23.60 × blob_count (R² = 0.022)
Residual σ = 644.1ms
Anomalies (>2σ slow): 244 (3.4%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13546532 0 10468 1766 +8702 solo_stakers Local Local
13543168 3 6216 1837 +4379 whale_0x88de Local Local
13541568 0 4971 1766 +3205 upbit Local Local
13542417 16 5148 2144 +3004 0xb26f9666... EthGas
13542304 0 4679 1766 +2913 everstake_lido Local Local
13540569 0 4274 1766 +2508 lido Local Local
13542596 0 4201 1766 +2435 ether.fi Local Local
13545812 6 4013 1907 +2106 ether.fi 0x82c466b9... EthGas
13545536 0 3777 1766 +2011 ether.fi Local Local
13541056 4 3790 1860 +1930 consensyscodefi_lido 0x850b00e0... BloXroute Max Profit
13539635 2 3714 1813 +1901 0xb26f9666... Titan Relay
13546250 1 3661 1789 +1872 0x8527d16c... Ultra Sound
13546093 2 3648 1813 +1835 0x8527d16c... Ultra Sound
13541531 1 3611 1789 +1822 ether.fi 0x8527d16c... Ultra Sound
13546432 0 3579 1766 +1813 0x88a53ec4... BloXroute Regulated
13546338 0 3577 1766 +1811 0x8a850621... Titan Relay
13544287 1 3597 1789 +1808 ether.fi 0x8527d16c... Ultra Sound
13540738 1 3563 1789 +1774 blockdaemon 0x8527d16c... Ultra Sound
13542943 6 3679 1907 +1772 ether.fi 0x856b0004... Agnostic Gnosis
13543283 1 3560 1789 +1771 0x8527d16c... Ultra Sound
13542066 5 3640 1884 +1756 revolut 0xb67eaa5e... Titan Relay
13543085 2 3539 1813 +1726 ether.fi 0x855b00e6... BloXroute Max Profit
13539906 7 3656 1931 +1725 blockdaemon 0x853b0078... Ultra Sound
13546480 6 3620 1907 +1713 0x853b0078... Ultra Sound
13543754 1 3501 1789 +1712 ether.fi 0x88a53ec4... BloXroute Regulated
13544999 11 3715 2026 +1689 0xb67eaa5e... BloXroute Max Profit
13546358 0 3442 1766 +1676 everstake 0xb26f9666... Titan Relay
13542880 1 3464 1789 +1675 everstake 0x88a53ec4... BloXroute Max Profit
13541962 4 3531 1860 +1671 ether.fi 0xb26f9666... Titan Relay
13540613 7 3600 1931 +1669 blockdaemon 0xb26f9666... Titan Relay
13541273 10 3670 2002 +1668 revolut 0xb67eaa5e... Titan Relay
13546178 5 3545 1884 +1661 blockdaemon 0x8a850621... Ultra Sound
13541623 7 3582 1931 +1651 figment 0xb26f9666... Ultra Sound
13540224 0 3411 1766 +1645 everstake 0xb26f9666... Titan Relay
13544805 6 3552 1907 +1645 ether.fi 0xb26f9666... Titan Relay
13540116 9 3620 1978 +1642 0xb67eaa5e... BloXroute Regulated
13541907 8 3595 1955 +1640 blockdaemon 0x8a850621... Titan Relay
13544475 0 3406 1766 +1640 abyss_finance 0xba003e46... Flashbots
13540056 8 3589 1955 +1634 blockdaemon 0x853b0078... Ultra Sound
13539926 5 3514 1884 +1630 ether.fi 0xb26f9666... Titan Relay
13540007 1 3419 1789 +1630 ether.fi 0xb7c5beef... Ultra Sound
13540233 11 3645 2026 +1619 0x8527d16c... Ultra Sound
13541638 1 3407 1789 +1618 everstake 0x8db2a99d... Flashbots
13544178 1 3390 1789 +1601 everstake 0x8527d16c... Ultra Sound
13542185 11 3622 2026 +1596 0x8527d16c... Ultra Sound
13546597 9 3574 1978 +1596 kraken 0xb26f9666... EthGas
13539837 1 3379 1789 +1590 everstake 0xb26f9666... Titan Relay
13541604 5 3467 1884 +1583 blockdaemon_lido 0xb67eaa5e... Titan Relay
13539992 1 3371 1789 +1582 everstake 0x8527d16c... Ultra Sound
13540820 8 3535 1955 +1580 everstake 0xb67eaa5e... BloXroute Max Profit
13545975 5 3460 1884 +1576 blockdaemon_lido 0x88857150... Ultra Sound
13544834 1 3362 1789 +1573 everstake 0xb26f9666... Titan Relay
13543024 0 3331 1766 +1565 blockdaemon 0xb211df49... Ultra Sound
13545070 19 3775 2214 +1561 ether.fi 0x96b5d4d9... EthGas
13545356 6 3467 1907 +1560 blockdaemon 0x8a850621... BloXroute Regulated
13540045 7 3488 1931 +1557 0x8a850621... Titan Relay
13541984 10 3555 2002 +1553 0x88a53ec4... BloXroute Max Profit
13540896 0 3318 1766 +1552 stakingfacilities_lido 0x91a8729e... Aestus
13545137 0 3315 1766 +1549 blockdaemon_lido 0xb67eaa5e... Titan Relay
13543583 1 3334 1789 +1545 blockdaemon 0x850b00e0... BloXroute Regulated
13544153 1 3327 1789 +1538 everstake 0xb26f9666... Titan Relay
13542030 4 3396 1860 +1536 everstake 0x853b0078... Agnostic Gnosis
13544264 2 3348 1813 +1535 blockdaemon_lido 0xb26f9666... Titan Relay
13545091 16 3678 2144 +1534 0xb26f9666... BloXroute Regulated
13544643 12 3583 2049 +1534 blockdaemon 0x853b0078... Ultra Sound
13544984 3 3370 1837 +1533 blockdaemon 0xb67eaa5e... BloXroute Regulated
13544959 10 3534 2002 +1532 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13545303 2 3344 1813 +1531 0xb26f9666... Titan Relay
13546188 1 3320 1789 +1531 blockdaemon 0x850b00e0... BloXroute Regulated
13544292 6 3435 1907 +1528 blockdaemon 0x8a850621... Titan Relay
13546400 5 3407 1884 +1523 binance 0x8a850621... Titan Relay
13545247 1 3312 1789 +1523 0x850b00e0... BloXroute Regulated
13544393 1 3309 1789 +1520 everstake 0x853b0078... BloXroute Max Profit
13546313 19 3732 2214 +1518 0xb26f9666... Titan Relay
13540958 6 3425 1907 +1518 ether.fi 0x8a850621... EthGas
13542934 15 3636 2120 +1516 everstake 0xb67eaa5e... BloXroute Max Profit
13542181 1 3301 1789 +1512 blockdaemon_lido 0xb26f9666... Titan Relay
13539647 2 3324 1813 +1511 everstake 0xb26f9666... Titan Relay
13539711 7 3439 1931 +1508 ether.fi 0x8527d16c... EthGas
13543296 9 3485 1978 +1507 everstake 0x855b00e6... BloXroute Max Profit
13546514 0 3268 1766 +1502 ether.fi 0x851b00b1... BloXroute Max Profit
13543346 5 3386 1884 +1502 solo_stakers Local Local
13544150 4 3361 1860 +1501 everstake 0xb26f9666... Titan Relay
13543202 8 3453 1955 +1498 everstake 0x853b0078... BloXroute Max Profit
13544008 6 3405 1907 +1498 rocketpool 0x850b00e0... BloXroute Max Profit
13544572 6 3404 1907 +1497 everstake 0xb26f9666... Titan Relay
13540812 1 3285 1789 +1496 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13542607 9 3473 1978 +1495 blockdaemon_lido 0xb67eaa5e... Titan Relay
13546009 3 3330 1837 +1493 0x88510a78... BloXroute Regulated
13546361 2 3306 1813 +1493 ether.fi 0xb26f9666... Aestus
13544965 3 3329 1837 +1492 everstake 0xb26f9666... Titan Relay
13542009 7 3423 1931 +1492 everstake 0x860d4173... Flashbots
13546531 1 3279 1789 +1490 0xb26f9666... Titan Relay
13546034 3 3326 1837 +1489 everstake 0xb67eaa5e... BloXroute Regulated
13546325 7 3420 1931 +1489 0xac23f8cc... BloXroute Max Profit
13544704 6 3396 1907 +1489 p2porg 0xb26f9666... BloXroute Regulated
13545770 0 3254 1766 +1488 everstake 0xb26f9666... Aestus
13546344 0 3254 1766 +1488 revolut 0xb26f9666... Titan Relay
13544221 0 3254 1766 +1488 everstake 0x852b0070... Ultra Sound
13539600 0 3244 1766 +1478 blockdaemon 0xb26f9666... Titan Relay
13544809 5 3362 1884 +1478 blockdaemon_lido 0xb67eaa5e... Titan Relay
13541232 2 3286 1813 +1473 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13543844 4 3333 1860 +1473 blockdaemon_lido 0xb26f9666... Titan Relay
13540011 8 3427 1955 +1472 everstake 0xb26f9666... Titan Relay
13545221 0 3235 1766 +1469 blockdaemon_lido 0xb26f9666... Titan Relay
13545491 6 3371 1907 +1464 blockdaemon_lido 0xb26f9666... Titan Relay
13542914 4 3322 1860 +1462 everstake 0xb26f9666... Titan Relay
13545344 8 3416 1955 +1461 everstake 0x853b0078... Ultra Sound
13543889 1 3249 1789 +1460 blockdaemon_lido 0x8527d16c... Ultra Sound
13539744 5 3342 1884 +1458 p2porg 0xb26f9666... BloXroute Max Profit
13540664 0 3223 1766 +1457 blockdaemon_lido 0x91a8729e... Ultra Sound
13546737 0 3222 1766 +1456 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13542782 1 3244 1789 +1455 blockdaemon_lido 0x8527d16c... Ultra Sound
13544173 7 3381 1931 +1450 everstake 0x853b0078... BloXroute Max Profit
13546103 6 3357 1907 +1450 ether.fi 0x8527d16c... Ultra Sound
13544260 6 3355 1907 +1448 ether.fi 0xb7c5beef... Titan Relay
13542106 12 3496 2049 +1447 0x8a850621... Titan Relay
13543028 4 3307 1860 +1447 luno 0xb26f9666... Titan Relay
13544975 8 3401 1955 +1446 blockdaemon 0xb26f9666... Titan Relay
13543388 0 3211 1766 +1445 blockdaemon 0x852b0070... Ultra Sound
13544355 3 3280 1837 +1443 blockdaemon_lido 0x88857150... Ultra Sound
13542269 4 3302 1860 +1442 blockdaemon 0xb26f9666... Titan Relay
13541855 0 3207 1766 +1441 luno 0x8527d16c... Ultra Sound
13540512 4 3301 1860 +1441 0x8db2a99d... Flashbots
13545529 4 3300 1860 +1440 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13546718 1 3229 1789 +1440 everstake 0x853b0078... BloXroute Max Profit
13544524 9 3413 1978 +1435 everstake 0xb26f9666... Titan Relay
13546612 5 3314 1884 +1430 blockdaemon_lido 0x853b0078... Ultra Sound
13540806 14 3525 2096 +1429 0xb26f9666... BloXroute Regulated
13542346 6 3335 1907 +1428 blockdaemon_lido 0xb26f9666... Titan Relay
13542784 9 3405 1978 +1427 0x853b0078... Aestus
13541994 7 3355 1931 +1424 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13539818 4 3282 1860 +1422 blockdaemon_lido 0xb26f9666... Titan Relay
13544896 0 3186 1766 +1420 stakefish Local Local
13542096 4 3279 1860 +1419 everstake 0xb26f9666... Titan Relay
13543124 5 3302 1884 +1418 0x8db2a99d... BloXroute Max Profit
13543780 6 3324 1907 +1417 blockdaemon 0x850b00e0... BloXroute Regulated
13542806 0 3180 1766 +1414 blockdaemon_lido 0x99dbe3e8... Ultra Sound
13544353 7 3343 1931 +1412 blockdaemon_lido 0xb26f9666... Titan Relay
13542916 0 3177 1766 +1411 0xb26f9666... Titan Relay
13546186 5 3292 1884 +1408 blockdaemon 0xb26f9666... Titan Relay
13543787 1 3197 1789 +1408 blockdaemon_lido 0xb26f9666... Titan Relay
13541000 4 3267 1860 +1407 everstake 0xb26f9666... Aestus
13544100 14 3503 2096 +1407 0xb67eaa5e... BloXroute Regulated
13542291 6 3314 1907 +1407 blockdaemon_lido 0x8db2a99d... BloXroute Max Profit
13545579 6 3314 1907 +1407 0x850b00e0... BloXroute Regulated
13545846 0 3169 1766 +1403 0xb26f9666... Titan Relay
13541098 4 3260 1860 +1400 everstake 0xb26f9666... Titan Relay
13546523 0 3165 1766 +1399 blockdaemon 0x8527d16c... Ultra Sound
13540508 9 3376 1978 +1398 everstake 0xb26f9666... Titan Relay
13542376 7 3328 1931 +1397 everstake 0x853b0078... BloXroute Max Profit
13545631 6 3304 1907 +1397 blockdaemon_lido 0xb26f9666... Titan Relay
13544698 4 3255 1860 +1395 0x853b0078... Ultra Sound
13546769 7 3325 1931 +1394 everstake 0xb26f9666... Titan Relay
13546296 1 3176 1789 +1387 0xb26f9666... BloXroute Max Profit
13544954 4 3246 1860 +1386 everstake 0x856b0004... BloXroute Max Profit
13541768 6 3289 1907 +1382 revolut 0xb67eaa5e... BloXroute Regulated
13542828 8 3335 1955 +1380 blockdaemon_lido 0xb67eaa5e... Titan Relay
13542294 1 3168 1789 +1379 0x853b0078... BloXroute Max Profit
13545872 6 3285 1907 +1378 luno 0xb26f9666... Titan Relay
13541383 6 3283 1907 +1376 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13540195 3 3212 1837 +1375 0x853b0078... Ultra Sound
13540800 1 3164 1789 +1375 nethermind_lido 0x8527d16c... Ultra Sound
13540283 0 3137 1766 +1371 0xa412c4b8... Flashbots
13543239 4 3231 1860 +1371 0x850b00e0... BloXroute Regulated
13542014 0 3136 1766 +1370 p2porg 0x83bee517... Flashbots
13540598 4 3230 1860 +1370 0x8527d16c... Ultra Sound
13541640 6 3276 1907 +1369 0xb67eaa5e... BloXroute Regulated
13545539 10 3369 2002 +1367 bitstamp 0xb67eaa5e... BloXroute Regulated
13542193 11 3392 2026 +1366 p2porg 0x850b00e0... BloXroute Max Profit
13545980 8 3321 1955 +1366 blockdaemon_lido 0xb26f9666... Titan Relay
13546637 2 3179 1813 +1366 blockdaemon_lido 0x853b0078... Ultra Sound
13541040 1 3155 1789 +1366 blockdaemon_lido 0x88510a78... BloXroute Regulated
13542178 8 3320 1955 +1365 kelp 0xb67eaa5e... BloXroute Max Profit
13539630 8 3318 1955 +1363 ether.fi 0xb26f9666... Titan Relay
13542227 4 3222 1860 +1362 0xb26f9666... Titan Relay
13540656 8 3316 1955 +1361 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13544967 2 3174 1813 +1361 figment 0xb67eaa5e... BloXroute Max Profit
13544657 3 3197 1837 +1360 0x853b0078... Ultra Sound
13544597 0 3126 1766 +1360 blockdaemon 0x88510a78... BloXroute Regulated
13540913 3 3193 1837 +1356 bitstamp 0x8527d16c... Ultra Sound
13542874 9 3334 1978 +1356 everstake 0x850b00e0... Flashbots
13545733 5 3238 1884 +1354 everstake 0xb26f9666... Titan Relay
13546227 5 3238 1884 +1354 everstake 0xb67eaa5e... BloXroute Regulated
13545509 9 3332 1978 +1354 luno 0xb26f9666... Titan Relay
13544163 2 3165 1813 +1352 0xb67eaa5e... BloXroute Max Profit
13543794 4 3212 1860 +1352 everstake 0x853b0078... BloXroute Max Profit
13542655 6 3258 1907 +1351 everstake 0xb26f9666... Titan Relay
13539897 12 3399 2049 +1350 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13542104 4 3208 1860 +1348 0xb67eaa5e... BloXroute Regulated
13546134 5 3231 1884 +1347 0x8a850621... Ultra Sound
13539780 7 3278 1931 +1347 0x850b00e0... BloXroute Max Profit
13545419 11 3369 2026 +1343 blockdaemon_lido 0x853b0078... Ultra Sound
13546314 7 3274 1931 +1343 0x88a53ec4... BloXroute Max Profit
13544903 6 3250 1907 +1343 everstake 0xb67eaa5e... BloXroute Regulated
13542506 1 3129 1789 +1340 gateway.fmas_lido 0xb67eaa5e... BloXroute Max Profit
13542658 1 3128 1789 +1339 p2porg 0x8527d16c... Ultra Sound
13542262 0 3101 1766 +1335 everstake 0xb26f9666... Titan Relay
13544749 15 3454 2120 +1334 everstake 0xb67eaa5e... BloXroute Regulated
13541557 11 3359 2026 +1333 everstake 0xb26f9666... Titan Relay
13542486 1 3120 1789 +1331 0x8527d16c... Ultra Sound
13539636 9 3308 1978 +1330 everstake 0xb7c5beef... Titan Relay
13541456 13 3402 2073 +1329 0x850b00e0... BloXroute Regulated
13545609 6 3236 1907 +1329 0x855b00e6... BloXroute Max Profit
13541413 4 3184 1860 +1324 stakingfacilities_lido 0x823e0146... BloXroute Max Profit
13546631 1 3113 1789 +1324 ether.fi 0x8527d16c... Ultra Sound
13542581 12 3372 2049 +1323 everstake 0x8527d16c... Ultra Sound
13545449 0 3088 1766 +1322 bitstamp 0x851b00b1... BloXroute Max Profit
13542019 2 3134 1813 +1321 0xa230e2cf... Agnostic Gnosis
13544841 1 3110 1789 +1321 p2porg 0x88a53ec4... BloXroute Max Profit
13540243 2 3133 1813 +1320 0x850b00e0... BloXroute Regulated
13543993 6 3225 1907 +1318 everstake 0x856b0004... BloXroute Max Profit
13546765 9 3294 1978 +1316 0x88510a78... BloXroute Regulated
13544799 9 3292 1978 +1314 blockdaemon_lido 0xb26f9666... Titan Relay
13544949 7 3243 1931 +1312 0xb67eaa5e... BloXroute Regulated
13540912 4 3172 1860 +1312 0x860d4173... BloXroute Max Profit
13543395 10 3313 2002 +1311 blockdaemon_lido 0x853b0078... Ultra Sound
13546569 3 3147 1837 +1310 0xb26f9666... Titan Relay
13546433 0 3075 1766 +1309 0x8527d16c... Ultra Sound
13542714 9 3287 1978 +1309 blockdaemon 0xb67eaa5e... Ultra Sound
13545192 0 3074 1766 +1308 0xb1f625cd... Flashbots
13540618 4 3168 1860 +1308 everstake 0x8527d16c... Ultra Sound
13544209 4 3167 1860 +1307 everstake 0xb26f9666... Titan Relay
13545946 14 3403 2096 +1307 blockdaemon 0x8a850621... Titan Relay
13543949 4 3166 1860 +1306 p2porg 0xac23f8cc... BloXroute Max Profit
13543348 1 3095 1789 +1306 ether.fi 0xb26f9666... Aestus
13543856 11 3331 2026 +1305 everstake 0x853b0078... Ultra Sound
13546459 1 3094 1789 +1305 kelp 0xb26f9666... Titan Relay
13543387 6 3211 1907 +1304 p2porg 0x8527d16c... Ultra Sound
13543896 1 3090 1789 +1301 gateway.fmas_lido 0x8db2a99d... BloXroute Max Profit
13544265 3 3137 1837 +1300 0xb26f9666... Titan Relay
13541744 2 3113 1813 +1300 0xb67eaa5e... BloXroute Regulated
13541925 1 3089 1789 +1300 0x8a850621... Titan Relay
13540836 5 3183 1884 +1299 stakingfacilities_lido 0x853b0078... Agnostic Gnosis
13543544 10 3301 2002 +1299 0x853b0078... Ultra Sound
13542737 1 3088 1789 +1299 0xb67eaa5e... BloXroute Regulated
13545261 1 3087 1789 +1298 everstake 0x88a53ec4... BloXroute Regulated
13544860 6 3203 1907 +1296 stakingfacilities_lido 0x856b0004... Ultra Sound
13546377 5 3179 1884 +1295 0xb26f9666... BloXroute Max Profit
13540772 1 3082 1789 +1293 kelp 0xb26f9666... Titan Relay
13543302 9 3269 1978 +1291 0x88a53ec4... BloXroute Regulated
13543172 1 3080 1789 +1291 p2porg 0x823e0146... Flashbots
13543647 0 3056 1766 +1290 0x8a850621... Ultra Sound
13540776 2 3102 1813 +1289 0xb26f9666... Titan Relay
Total anomalies: 244

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})