Sat, Jan 24, 2026

Propagation anomalies - 2026-01-24

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-24' AND slot_start_date_time < '2026-01-24'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-24' AND slot_start_date_time < '2026-01-24'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-24' AND slot_start_date_time < '2026-01-24'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-24' AND slot_start_date_time < '2026-01-24'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-24' AND slot_start_date_time < '2026-01-24'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-24' AND slot_start_date_time < '2026-01-24'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-24' AND slot_start_date_time < '2026-01-24'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-24' AND slot_start_date_time < '2026-01-24'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,185
MEV blocks: 6,719 (93.5%)
Local blocks: 466 (6.5%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1801.3 + 16.95 × blob_count (R² = 0.011)
Residual σ = 646.8ms
Anomalies (>2σ slow): 213 (3.0%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13536893 0 7579 1801 +5778 ether.fi Local Local
13538224 0 7179 1801 +5378 solo_stakers Local Local
13536228 0 7111 1801 +5310 ether.fi Local Local
13535093 0 6851 1801 +5050 ether.fi Local Local
13536938 0 6096 1801 +4295 hashquark_lido Local Local
13539296 0 5851 1801 +4050 upbit Local Local
13534277 0 4595 1801 +2794 solo_stakers Local Local
13539008 0 4495 1801 +2694 upbit Local Local
13532768 3 4380 1852 +2528 Local Local
13533792 0 4193 1801 +2392 upbit Local Local
13532412 0 4038 1801 +2237 everstake Local Local
13537608 0 3994 1801 +2193 Local Local
13536576 0 3985 1801 +2184 Local Local
13532432 0 3847 1801 +2046 solo_stakers Local Local
13536520 9 3876 1954 +1922 rocketpool 0xb67eaa5e... Titan Relay
13535447 0 3707 1801 +1906 everstake Local Local
13539013 1 3707 1818 +1889 kelp 0x88a53ec4... BloXroute Regulated
13537924 1 3706 1818 +1888 stakefish_lido 0x850b00e0... Ultra Sound
13535736 4 3708 1869 +1839 ether.fi 0xb26f9666... Titan Relay
13532549 0 3627 1801 +1826 everstake 0x8527d16c... Ultra Sound
13539304 5 3689 1886 +1803 stakefish_lido 0xb67eaa5e... BloXroute Max Profit
13535512 1 3621 1818 +1803 solo_stakers Local Local
13533324 5 3672 1886 +1786 0x8527d16c... Ultra Sound
13534816 1 3588 1818 +1770 luno 0x856b0004... Ultra Sound
13533847 1 3585 1818 +1767 0x91b123d8... BloXroute Regulated
13535369 1 3583 1818 +1765 blockdaemon 0xb26f9666... Titan Relay
13539206 2 3588 1835 +1753 figment 0xb26f9666... BloXroute Regulated
13536757 3 3602 1852 +1750 blockdaemon 0x853b0078... Ultra Sound
13537409 3 3598 1852 +1746 0x8527d16c... Ultra Sound
13534250 2 3578 1835 +1743 everstake 0x8527d16c... Ultra Sound
13533335 1 3553 1818 +1735 ether.fi 0x8527d16c... Ultra Sound
13538858 1 3553 1818 +1735 blockdaemon 0xb26f9666... Titan Relay
13539579 1 3549 1818 +1731 0xb26f9666... Titan Relay
13539084 1 3549 1818 +1731 blockdaemon 0x88510a78... BloXroute Regulated
13534137 6 3625 1903 +1722 0x8527d16c... Ultra Sound
13537024 6 3623 1903 +1720 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13537886 1 3536 1818 +1718 blockdaemon 0x853b0078... Ultra Sound
13534133 0 3515 1801 +1714 blockdaemon 0xb26f9666... Titan Relay
13533611 1 3530 1818 +1712 blockdaemon 0x8527d16c... Ultra Sound
13537061 8 3644 1937 +1707 0xb26f9666... Aestus
13538668 0 3504 1801 +1703 0x856b0004... Ultra Sound
13536584 1 3507 1818 +1689 0x8527d16c... Ultra Sound
13535705 1 3503 1818 +1685 everstake 0xb26f9666... Titan Relay
13536776 9 3632 1954 +1678 0x850b00e0... BloXroute Regulated
13538687 7 3585 1920 +1665 blockdaemon 0xb26f9666... Titan Relay
13532579 7 3573 1920 +1653 0x853b0078... Aestus
13532517 17 3742 2089 +1653 everstake 0xb26f9666... Titan Relay
13533503 1 3468 1818 +1650 everstake 0x88a53ec4... BloXroute Max Profit
13537031 8 3586 1937 +1649 figment 0xb26f9666... Titan Relay
13536425 1 3467 1818 +1649 everstake 0xb26f9666... Titan Relay
13534132 1 3466 1818 +1648 everstake 0xb26f9666... Titan Relay
13533748 4 3504 1869 +1635 revolut 0x850b00e0... BloXroute Regulated
13537266 4 3501 1869 +1632 blockdaemon_lido 0xb67eaa5e... Titan Relay
13534832 1 3449 1818 +1631 0x8a850621... Titan Relay
13537781 8 3565 1937 +1628 blockdaemon 0x8527d16c... Ultra Sound
13537801 1 3446 1818 +1628 everstake 0xb26f9666... Titan Relay
13538047 1 3441 1818 +1623 everstake 0xb26f9666... Titan Relay
13535899 2 3457 1835 +1622 0x855b00e6... BloXroute Max Profit
13535062 2 3456 1835 +1621 0xb7c5e609... BloXroute Max Profit
13536945 12 3622 2005 +1617 whale_0xdd6c 0xb67eaa5e... BloXroute Regulated
13534253 1 3435 1818 +1617 blockdaemon_lido 0xb67eaa5e... Titan Relay
13539108 8 3537 1937 +1600 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13538905 2 3434 1835 +1599 everstake 0xb26f9666... Titan Relay
13537862 10 3561 1971 +1590 whale_0x7c1b 0x853b0078... Ultra Sound
13534135 12 3592 2005 +1587 blockdaemon 0x8527d16c... Ultra Sound
13538097 2 3422 1835 +1587 ether.fi 0xb26f9666... Titan Relay
13532629 2 3410 1835 +1575 everstake 0xb26f9666... Aestus
13534449 6 3477 1903 +1574 everstake 0x88a53ec4... BloXroute Max Profit
13532931 14 3609 2039 +1570 blockdaemon 0x853b0078... Ultra Sound
13538557 0 3369 1801 +1568 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13538783 1 3385 1818 +1567 blockdaemon_lido 0xb67eaa5e... Titan Relay
13538351 0 3356 1801 +1555 everstake 0xb26f9666... Titan Relay
13536387 7 3472 1920 +1552 0x850b00e0... BloXroute Regulated
13539248 3 3403 1852 +1551 everstake 0x8527d16c... Ultra Sound
13536577 0 3347 1801 +1546 blockdaemon 0x926b7905... BloXroute Regulated
13538400 0 3336 1801 +1535 stakingfacilities_lido 0x8527d16c... Ultra Sound
13535508 5 3419 1886 +1533 Local Local
13538125 7 3448 1920 +1528 ether.fi 0xb26f9666... Titan Relay
13534396 0 3328 1801 +1527 everstake 0x91a8729e... BloXroute Max Profit
13533449 1 3341 1818 +1523 blockdaemon 0xb26f9666... Titan Relay
13533651 5 3405 1886 +1519 everstake 0x823e0146... Flashbots
13533148 4 3387 1869 +1518 everstake 0x853b0078... Agnostic Gnosis
13532748 2 3353 1835 +1518 everstake 0xb26f9666... Titan Relay
13535324 8 3452 1937 +1515 0xb67eaa5e... BloXroute Regulated
13538720 3 3367 1852 +1515 p2porg 0x855b00e6... BloXroute Max Profit
13533758 7 3432 1920 +1512 0xac23f8cc... Flashbots
13537519 3 3362 1852 +1510 0xb26f9666... Aestus
13534283 4 3378 1869 +1509 blockdaemon 0x88a53ec4... BloXroute Regulated
13534496 4 3377 1869 +1508 0x8527d16c... Ultra Sound
13536685 5 3388 1886 +1502 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13536343 4 3370 1869 +1501 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13536351 3 3345 1852 +1493 everstake 0x853b0078... BloXroute Max Profit
13537193 5 3378 1886 +1492 blockdaemon_lido 0xb67eaa5e... Titan Relay
13533607 1 3307 1818 +1489 everstake 0x860d4173... Flashbots
13532635 1 3307 1818 +1489 luno 0x850b00e0... BloXroute Regulated
13537483 3 3338 1852 +1486 0x88a53ec4... BloXroute Max Profit
13532961 2 3320 1835 +1485 everstake 0xb26f9666... Titan Relay
13532861 4 3353 1869 +1484 everstake 0xb26f9666... Titan Relay
13533969 3 3330 1852 +1478 everstake 0x88cd924c... Flashbots
13532816 3 3329 1852 +1477 everstake 0xb26f9666... Titan Relay
13537992 7 3393 1920 +1473 everstake 0xb26f9666... Titan Relay
13539116 0 3272 1801 +1471 blockdaemon_lido 0x99dbe3e8... Ultra Sound
13532736 7 3384 1920 +1464 stakingfacilities_lido 0xb26f9666... Titan Relay
13536703 4 3333 1869 +1464 blockdaemon_lido 0xb26f9666... Titan Relay
13539166 17 3549 2089 +1460 everstake 0x855b00e6... BloXroute Max Profit
13537981 10 3430 1971 +1459 luno 0xb26f9666... Titan Relay
13538232 4 3328 1869 +1459 blockdaemon_lido 0xb26f9666... Titan Relay
13538865 3 3311 1852 +1459 luno 0x8527d16c... Ultra Sound
13532920 0 3260 1801 +1459 blockdaemon 0x91a8729e... BloXroute Regulated
13536133 9 3410 1954 +1456 blockdaemon 0x850b00e0... BloXroute Regulated
13538322 6 3354 1903 +1451 blockdaemon_lido 0xb26f9666... Titan Relay
13535049 3 3302 1852 +1450 blockdaemon_lido 0xb26f9666... Titan Relay
13536545 13 3471 2022 +1449 blockdaemon 0x8a850621... Titan Relay
13534524 8 3384 1937 +1447 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13534721 7 3365 1920 +1445 0x850b00e0... BloXroute Regulated
13536935 0 3246 1801 +1445 blockdaemon 0xb26f9666... Titan Relay
13534460 0 3246 1801 +1445 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13534262 9 3395 1954 +1441 blockdaemon 0x8a850621... Titan Relay
13539453 3 3292 1852 +1440 blockdaemon_lido 0x860d4173... BloXroute Regulated
13533358 17 3529 2089 +1440 ether.fi 0x853b0078... Aestus
13533418 4 3307 1869 +1438 0x853b0078... Ultra Sound
13536936 3 3290 1852 +1438 0x8a850621... Ultra Sound
13538391 1 3255 1818 +1437 everstake 0xb26f9666... Titan Relay
13536736 1 3247 1818 +1429 0x8527d16c... Ultra Sound
13534534 1 3247 1818 +1429 everstake 0xb26f9666... Titan Relay
13535484 2 3263 1835 +1428 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13535131 1 3246 1818 +1428 blockdaemon_lido 0x860d4173... BloXroute Regulated
13533501 3 3279 1852 +1427 everstake 0xa230e2cf... BloXroute Max Profit
13538333 0 3228 1801 +1427 0xb26f9666... Titan Relay
13536890 0 3227 1801 +1426 blockdaemon_lido 0x926b7905... BloXroute Regulated
13535282 6 3326 1903 +1423 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13535723 9 3376 1954 +1422 everstake 0xb26f9666... Titan Relay
13535178 5 3307 1886 +1421 blockdaemon_lido 0xb26f9666... Titan Relay
13534281 10 3385 1971 +1414 everstake 0xb26f9666... Titan Relay
13535849 6 3317 1903 +1414 blockdaemon 0x8527d16c... Ultra Sound
13539584 4 3282 1869 +1413 bridgetower_lido 0x8527d16c... Ultra Sound
13533795 5 3293 1886 +1407 gateway.fmas_lido 0xb67eaa5e... BloXroute Max Profit
13537260 0 3208 1801 +1407 blockdaemon_lido 0xb26f9666... Titan Relay
13539250 6 3307 1903 +1404 blockdaemon 0x850b00e0... BloXroute Regulated
13533572 13 3425 2022 +1403 everstake 0x8527d16c... Ultra Sound
13536179 7 3321 1920 +1401 everstake 0x850b00e0... BloXroute Max Profit
13536768 1 3212 1818 +1394 0x856b0004... BloXroute Max Profit
13535218 5 3278 1886 +1392 blockdaemon_lido 0x850b00e0... Ultra Sound
13535017 4 3260 1869 +1391 everstake 0xb26f9666... Titan Relay
13533982 4 3260 1869 +1391 blockdaemon_lido 0x853b0078... Ultra Sound
13536470 6 3290 1903 +1387 everstake 0x853b0078... BloXroute Max Profit
13532650 7 3306 1920 +1386 blockdaemon_lido 0xb26f9666... Titan Relay
13534016 1 3201 1818 +1383 p2porg 0xb26f9666... Titan Relay
13535460 1 3198 1818 +1380 0x850b00e0... BloXroute Max Profit
13532606 8 3312 1937 +1375 everstake 0x8527d16c... Ultra Sound
13532545 5 3260 1886 +1374 0x88a53ec4... BloXroute Regulated
13535006 1 3192 1818 +1374 blockdaemon_lido 0xb26f9666... Titan Relay
13535755 5 3256 1886 +1370 0xb26f9666... Titan Relay
13534992 6 3272 1903 +1369 blockdaemon 0x82c466b9... BloXroute Regulated
13535137 1 3182 1818 +1364 everstake 0xb26f9666... Aestus
13532771 0 3165 1801 +1364 p2porg 0x91a8729e... BloXroute Max Profit
13534762 13 3382 2022 +1360 0xb26f9666... BloXroute Max Profit
13538138 1 3176 1818 +1358 0x88a53ec4... BloXroute Regulated
13533940 1 3174 1818 +1356 0x88857150... Ultra Sound
13538236 9 3309 1954 +1355 everstake 0x856b0004... Agnostic Gnosis
13539179 6 3258 1903 +1355 0x8527d16c... Ultra Sound
13536290 4 3224 1869 +1355 0x855b00e6... BloXroute Max Profit
13537558 9 3301 1954 +1347 0x850b00e0... BloXroute Regulated
13537249 0 3148 1801 +1347 everstake 0xb26f9666... Titan Relay
13537223 0 3147 1801 +1346 0x91a8729e... Aestus
13534034 1 3163 1818 +1345 gateway.fmas_lido 0x8527d16c... Ultra Sound
13537732 7 3264 1920 +1344 0xb26f9666... BloXroute Max Profit
13533064 6 3247 1903 +1344 revolut 0xb26f9666... Titan Relay
13534856 8 3279 1937 +1342 everstake 0x853b0078... BloXroute Max Profit
13538212 2 3177 1835 +1342 blockdaemon_lido 0xb26f9666... Titan Relay
13533511 10 3311 1971 +1340 everstake 0x860d4173... BloXroute Max Profit
13538460 7 3260 1920 +1340 0xb26f9666... Titan Relay
13533477 1 3156 1818 +1338 0xb26f9666... Titan Relay
13538307 4 3204 1869 +1335 everstake 0xb26f9666... Titan Relay
13538183 3 3185 1852 +1333 0x82c466b9... Flashbots
13538137 1 3150 1818 +1332 0x8a850621... Ultra Sound
13536762 0 3133 1801 +1332 everstake 0x852b0070... Agnostic Gnosis
13536752 13 3353 2022 +1331 whale_0x7791 0xb26f9666... BloXroute Max Profit
13538831 9 3284 1954 +1330 everstake 0xb26f9666... Titan Relay
13535468 9 3282 1954 +1328 blockdaemon 0xb26f9666... Titan Relay
13532863 9 3280 1954 +1326 blockdaemon 0xb26f9666... Titan Relay
13536336 2 3159 1835 +1324 0x8527d16c... Ultra Sound
13539146 4 3192 1869 +1323 everstake 0xb26f9666... Titan Relay
13535088 0 3124 1801 +1323 0x850b00e0... BloXroute Regulated
13532586 6 3225 1903 +1322 0xb26f9666... Titan Relay
13532870 0 3123 1801 +1322 everstake 0x91a8729e... BloXroute Max Profit
13536216 5 3207 1886 +1321 0x8527d16c... Ultra Sound
13534306 5 3205 1886 +1319 0x823e0146... BloXroute Max Profit
13533682 9 3271 1954 +1317 ether.fi 0x88857150... Ultra Sound
13533118 10 3286 1971 +1315 blockdaemon_lido 0xb26f9666... Titan Relay
13533104 5 3201 1886 +1315 0xb7c5e609... BloXroute Max Profit
13537841 2 3149 1835 +1314 0x850b00e0... BloXroute Regulated
13536134 7 3233 1920 +1313 blockdaemon_lido 0x853b0078... Ultra Sound
13535967 6 3216 1903 +1313 ether.fi 0x8527d16c... Ultra Sound
13537525 1 3130 1818 +1312 everstake 0xb26f9666... Titan Relay
13534409 9 3264 1954 +1310 0x853b0078... Agnostic Gnosis
13534979 6 3213 1903 +1310 everstake 0xb26f9666... Titan Relay
13534623 1 3127 1818 +1309 0x8a850621... Ultra Sound
13536023 8 3245 1937 +1308 ether.fi Local Local
13535497 6 3209 1903 +1306 0x8a850621... Ultra Sound
13538740 2 3140 1835 +1305 p2porg 0x853b0078... Aestus
13533717 2 3139 1835 +1304 p2porg 0x850b00e0... BloXroute Regulated
13534698 9 3257 1954 +1303 0xb26f9666... BloXroute Regulated
13534611 5 3188 1886 +1302 0x850b00e0... Flashbots
13537098 0 3103 1801 +1302 0x8527d16c... Ultra Sound
13533837 10 3271 1971 +1300 p2porg 0x8527d16c... Ultra Sound
13537501 5 3186 1886 +1300 0xb26f9666... BloXroute Regulated
13536543 18 3406 2106 +1300 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13538007 11 3287 1988 +1299 0x855b00e6... BloXroute Max Profit
13532506 8 3235 1937 +1298 Local Local
13533959 0 3098 1801 +1297 p2porg 0xb1f625cd... Flashbots
13536587 13 3317 2022 +1295 blockdaemon_lido 0x853b0078... Ultra Sound
13538607 3 3146 1852 +1294 0x8db2a99d... Flashbots
Total anomalies: 213

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})