Sat, Jan 17, 2026

Propagation anomalies - 2026-01-17

Detection of blocks that propagated slower than expected, attempting to find correlations with blob count.

Show code
display_sql("block_production_timeline", target_date)
View query
WITH
-- Base slots using proposer duty as the source of truth
slots AS (
    SELECT DISTINCT
        slot,
        slot_start_date_time,
        proposer_validator_index
    FROM canonical_beacon_proposer_duty
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-17' AND slot_start_date_time < '2026-01-17'::date + INTERVAL 1 DAY
),

-- Proposer entity mapping
proposer_entity AS (
    SELECT
        index,
        entity
    FROM ethseer_validator_entity
    WHERE meta_network_name = 'mainnet'
),

-- Blob count per slot
blob_count AS (
    SELECT
        slot,
        uniq(blob_index) AS blob_count
    FROM canonical_beacon_blob_sidecar
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-17' AND slot_start_date_time < '2026-01-17'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Canonical block hash (to verify MEV payload was actually used)
canonical_block AS (
    SELECT DISTINCT
        slot,
        execution_payload_block_hash
    FROM canonical_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-17' AND slot_start_date_time < '2026-01-17'::date + INTERVAL 1 DAY
),

-- MEV bid timing using timestamp_ms
mev_bids AS (
    SELECT
        slot,
        slot_start_date_time,
        min(timestamp_ms) AS first_bid_timestamp_ms,
        max(timestamp_ms) AS last_bid_timestamp_ms
    FROM mev_relay_bid_trace
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-17' AND slot_start_date_time < '2026-01-17'::date + INTERVAL 1 DAY
    GROUP BY slot, slot_start_date_time
),

-- MEV payload delivery - join canonical block with delivered payloads
-- Note: Use is_mev flag because ClickHouse LEFT JOIN returns 0 (not NULL) for non-matching rows
-- Get value from proposer_payload_delivered (not bid_trace, which may not have the winning block)
mev_payload AS (
    SELECT
        cb.slot,
        cb.execution_payload_block_hash AS winning_block_hash,
        1 AS is_mev,
        max(pd.value) AS winning_bid_value,
        groupArray(DISTINCT pd.relay_name) AS relay_names,
        any(pd.builder_pubkey) AS winning_builder
    FROM canonical_block cb
    GLOBAL INNER JOIN mev_relay_proposer_payload_delivered pd
        ON cb.slot = pd.slot AND cb.execution_payload_block_hash = pd.block_hash
    WHERE pd.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-17' AND slot_start_date_time < '2026-01-17'::date + INTERVAL 1 DAY
    GROUP BY cb.slot, cb.execution_payload_block_hash
),

-- Winning bid timing from bid_trace (may not exist for all MEV blocks)
winning_bid AS (
    SELECT
        bt.slot,
        bt.slot_start_date_time,
        argMin(bt.timestamp_ms, bt.event_date_time) AS winning_bid_timestamp_ms
    FROM mev_relay_bid_trace bt
    GLOBAL INNER JOIN mev_payload mp ON bt.slot = mp.slot AND bt.block_hash = mp.winning_block_hash
    WHERE bt.meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-17' AND slot_start_date_time < '2026-01-17'::date + INTERVAL 1 DAY
    GROUP BY bt.slot, bt.slot_start_date_time
),

-- Block gossip timing with spread
block_gossip AS (
    SELECT
        slot,
        min(event_date_time) AS block_first_seen,
        max(event_date_time) AS block_last_seen
    FROM libp2p_gossipsub_beacon_block
    WHERE meta_network_name = 'mainnet'
      AND slot_start_date_time >= '2026-01-17' AND slot_start_date_time < '2026-01-17'::date + INTERVAL 1 DAY
    GROUP BY slot
),

-- Column arrival timing: first arrival per column, then min/max of those
column_gossip AS (
    SELECT
        slot,
        min(first_seen) AS first_column_first_seen,
        max(first_seen) AS last_column_first_seen
    FROM (
        SELECT
            slot,
            column_index,
            min(event_date_time) AS first_seen
        FROM libp2p_gossipsub_data_column_sidecar
        WHERE meta_network_name = 'mainnet'
          AND slot_start_date_time >= '2026-01-17' AND slot_start_date_time < '2026-01-17'::date + INTERVAL 1 DAY
          AND event_date_time > '1970-01-01 00:00:01'
        GROUP BY slot, column_index
    )
    GROUP BY slot
)

SELECT
    s.slot AS slot,
    s.slot_start_date_time AS slot_start_date_time,
    pe.entity AS proposer_entity,

    -- Blob count
    coalesce(bc.blob_count, 0) AS blob_count,

    -- MEV bid timing (absolute and relative to slot start)
    fromUnixTimestamp64Milli(mb.first_bid_timestamp_ms) AS first_bid_at,
    mb.first_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS first_bid_ms,
    fromUnixTimestamp64Milli(mb.last_bid_timestamp_ms) AS last_bid_at,
    mb.last_bid_timestamp_ms - toInt64(toUnixTimestamp(mb.slot_start_date_time)) * 1000 AS last_bid_ms,

    -- Winning bid timing (from bid_trace, may be NULL if block hash not in bid_trace)
    if(wb.slot != 0, fromUnixTimestamp64Milli(wb.winning_bid_timestamp_ms), NULL) AS winning_bid_at,
    if(wb.slot != 0, wb.winning_bid_timestamp_ms - toInt64(toUnixTimestamp(s.slot_start_date_time)) * 1000, NULL) AS winning_bid_ms,

    -- MEV payload info (from proposer_payload_delivered, always present for MEV blocks)
    if(mp.is_mev = 1, mp.winning_bid_value, NULL) AS winning_bid_value,
    if(mp.is_mev = 1, mp.relay_names, []) AS winning_relays,
    if(mp.is_mev = 1, mp.winning_builder, NULL) AS winning_builder,

    -- Block gossip timing with spread
    bg.block_first_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_first_seen) AS block_first_seen_ms,
    bg.block_last_seen,
    dateDiff('millisecond', s.slot_start_date_time, bg.block_last_seen) AS block_last_seen_ms,
    dateDiff('millisecond', bg.block_first_seen, bg.block_last_seen) AS block_spread_ms,

    -- Column arrival timing (NULL when no blobs)
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.first_column_first_seen) AS first_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.first_column_first_seen)) AS first_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, cg.last_column_first_seen) AS last_column_first_seen,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', s.slot_start_date_time, cg.last_column_first_seen)) AS last_column_first_seen_ms,
    if(coalesce(bc.blob_count, 0) = 0, NULL, dateDiff('millisecond', cg.first_column_first_seen, cg.last_column_first_seen)) AS column_spread_ms

FROM slots s
GLOBAL LEFT JOIN proposer_entity pe ON s.proposer_validator_index = pe.index
GLOBAL LEFT JOIN blob_count bc ON s.slot = bc.slot
GLOBAL LEFT JOIN mev_bids mb ON s.slot = mb.slot
GLOBAL LEFT JOIN mev_payload mp ON s.slot = mp.slot
GLOBAL LEFT JOIN winning_bid wb ON s.slot = wb.slot
GLOBAL LEFT JOIN block_gossip bg ON s.slot = bg.slot
GLOBAL LEFT JOIN column_gossip cg ON s.slot = cg.slot

ORDER BY s.slot DESC
Show code
df = load_parquet("block_production_timeline", target_date)

# Filter to valid blocks (exclude missed slots)
df = df[df["block_first_seen_ms"].notna()]
df = df[(df["block_first_seen_ms"] >= 0) & (df["block_first_seen_ms"] < 60000)]

# Flag MEV vs local blocks
df["has_mev"] = df["winning_bid_value"].notna()
df["block_type"] = df["has_mev"].map({True: "MEV", False: "Local"})

# Get max blob count for charts
max_blobs = df["blob_count"].max()

print(f"Total valid blocks: {len(df):,}")
print(f"MEV blocks: {df['has_mev'].sum():,} ({df['has_mev'].mean()*100:.1f}%)")
print(f"Local blocks: {(~df['has_mev']).sum():,} ({(~df['has_mev']).mean()*100:.1f}%)")
Total valid blocks: 7,181
MEV blocks: 6,698 (93.3%)
Local blocks: 483 (6.7%)

Anomaly detection method

The method:

  1. Fit linear regression: block_first_seen_ms ~ blob_count
  2. Calculate residuals (actual - expected)
  3. Flag blocks with residuals > 2σ as anomalies

Points above the ±2σ band propagated slower than expected given their blob count.

Show code
# Conditional outliers: blocks slow relative to their blob count
df_anomaly = df.copy()

# Fit regression: block_first_seen_ms ~ blob_count
slope, intercept, r_value, p_value, std_err = stats.linregress(
    df_anomaly["blob_count"].astype(float), df_anomaly["block_first_seen_ms"]
)

# Calculate expected value and residual
df_anomaly["expected_ms"] = intercept + slope * df_anomaly["blob_count"].astype(float)
df_anomaly["residual_ms"] = df_anomaly["block_first_seen_ms"] - df_anomaly["expected_ms"]

# Calculate residual standard deviation
residual_std = df_anomaly["residual_ms"].std()

# Flag anomalies: residual > 2σ (unexpectedly slow)
df_anomaly["is_anomaly"] = df_anomaly["residual_ms"] > 2 * residual_std

n_anomalies = df_anomaly["is_anomaly"].sum()
pct_anomalies = n_anomalies / len(df_anomaly) * 100

# Prepare outliers dataframe
df_outliers = df_anomaly[df_anomaly["is_anomaly"]].copy()
df_outliers["relay"] = df_outliers["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
df_outliers["proposer"] = df_outliers["proposer_entity"].fillna("Unknown")
df_outliers["builder"] = df_outliers["winning_builder"].apply(
    lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
)

print(f"Regression: block_ms = {intercept:.1f} + {slope:.2f} × blob_count (R² = {r_value**2:.3f})")
print(f"Residual σ = {residual_std:.1f}ms")
print(f"Anomalies (>2σ slow): {n_anomalies:,} ({pct_anomalies:.1f}%)")
Regression: block_ms = 1763.6 + 20.74 × blob_count (R² = 0.018)
Residual σ = 636.5ms
Anomalies (>2σ slow): 257 (3.6%)
Show code
# Create scatter plot with regression band
x_range = np.array([0, int(max_blobs)])
y_pred = intercept + slope * x_range
y_upper = y_pred + 2 * residual_std
y_lower = y_pred - 2 * residual_std

fig = go.Figure()

# Add ±2σ band
fig.add_trace(go.Scatter(
    x=np.concatenate([x_range, x_range[::-1]]),
    y=np.concatenate([y_upper, y_lower[::-1]]),
    fill="toself",
    fillcolor="rgba(100,100,100,0.2)",
    line=dict(width=0),
    name="±2σ band",
    hoverinfo="skip",
))

# Add regression line
fig.add_trace(go.Scatter(
    x=x_range,
    y=y_pred,
    mode="lines",
    line=dict(color="white", width=2, dash="dash"),
    name="Expected",
))

# Normal points (sample to avoid overplotting)
df_normal = df_anomaly[~df_anomaly["is_anomaly"]]
if len(df_normal) > 2000:
    df_normal = df_normal.sample(2000, random_state=42)

fig.add_trace(go.Scatter(
    x=df_normal["blob_count"],
    y=df_normal["block_first_seen_ms"],
    mode="markers",
    marker=dict(size=4, color="rgba(100,150,200,0.4)"),
    name=f"Normal ({len(df_anomaly) - n_anomalies:,})",
    hoverinfo="skip",
))

# Anomaly points
fig.add_trace(go.Scatter(
    x=df_outliers["blob_count"],
    y=df_outliers["block_first_seen_ms"],
    mode="markers",
    marker=dict(
        size=7,
        color="#e74c3c",
        line=dict(width=1, color="white"),
    ),
    name=f"Anomalies ({n_anomalies:,})",
    customdata=np.column_stack([
        df_outliers["slot"],
        df_outliers["residual_ms"].round(0),
        df_outliers["relay"],
    ]),
    hovertemplate="<b>Slot %{customdata[0]}</b><br>Blobs: %{x}<br>Actual: %{y:.0f}ms<br>+%{customdata[1]}ms vs expected<br>Relay: %{customdata[2]}<extra></extra>",
))

fig.update_layout(
    margin=dict(l=60, r=30, t=30, b=60),
    xaxis=dict(title="Blob count", range=[-0.5, int(max_blobs) + 0.5]),
    yaxis=dict(title="Block first seen (ms from slot start)"),
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
    height=500,
)
fig.show(config={"responsive": True})

All propagation anomalies

Blocks that propagated much slower than expected given their blob count, sorted by residual (worst first).

Show code
# All anomalies table with selectable text and Lab links
if n_anomalies > 0:
    df_table = df_outliers.sort_values("residual_ms", ascending=False)[
        ["slot", "blob_count", "block_first_seen_ms", "expected_ms", "residual_ms", "proposer", "builder", "relay"]
    ].copy()
    df_table["block_first_seen_ms"] = df_table["block_first_seen_ms"].round(0).astype(int)
    df_table["expected_ms"] = df_table["expected_ms"].round(0).astype(int)
    df_table["residual_ms"] = df_table["residual_ms"].round(0).astype(int)
    
    # Build HTML table
    html = '''
    <style>
    .anomaly-table { border-collapse: collapse; width: 100%; font-family: monospace; font-size: 13px; }
    .anomaly-table th { background: #2c3e50; color: white; padding: 8px 12px; text-align: left; position: sticky; top: 0; }
    .anomaly-table td { padding: 6px 12px; border-bottom: 1px solid #eee; }
    .anomaly-table tr:hover { background: #f5f5f5; }
    .anomaly-table .num { text-align: right; }
    .anomaly-table .delta { background: #ffebee; color: #c62828; font-weight: bold; }
    .anomaly-table a { color: #1976d2; text-decoration: none; }
    .anomaly-table a:hover { text-decoration: underline; }
    .table-container { max-height: 600px; overflow-y: auto; }
    </style>
    <div class="table-container">
    <table class="anomaly-table">
    <thead>
    <tr><th>Slot</th><th class="num">Blobs</th><th class="num">Actual (ms)</th><th class="num">Expected (ms)</th><th class="num">Δ (ms)</th><th>Proposer</th><th>Builder</th><th>Relay</th></tr>
    </thead>
    <tbody>
    '''
    
    for _, row in df_table.iterrows():
        slot_link = f'<a href="https://lab.ethpandaops.io/ethereum/slots/{row["slot"]}" target="_blank">{row["slot"]}</a>'
        html += f'''<tr>
            <td>{slot_link}</td>
            <td class="num">{row["blob_count"]}</td>
            <td class="num">{row["block_first_seen_ms"]}</td>
            <td class="num">{row["expected_ms"]}</td>
            <td class="num delta">+{row["residual_ms"]}</td>
            <td>{row["proposer"]}</td>
            <td>{row["builder"]}</td>
            <td>{row["relay"]}</td>
        </tr>'''
    
    html += '</tbody></table></div>'
    display(HTML(html))
    print(f"\nTotal anomalies: {len(df_table):,}")
else:
    print("No anomalies detected.")
SlotBlobsActual (ms)Expected (ms)Δ (ms)ProposerBuilderRelay
13483764 0 11084 1764 +9320 solo_stakers Local Local
13484544 0 5744 1764 +3980 abyss_finance Local Local
13488448 0 5531 1764 +3767 abyss_finance Local Local
13487872 0 4300 1764 +2536 upbit Local Local
13488759 0 4146 1764 +2382 solo_stakers Local Local
13482144 0 4125 1764 +2361 senseinode_lido Local Local
13485483 0 4100 1764 +2336 solo_stakers Local Local
13482795 0 3920 1764 +2156 ether.fi Local Local
13487808 1 3873 1784 +2089 0x850b00e0... BloXroute Regulated
13488096 3 3712 1826 +1886 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13483120 6 3739 1888 +1851 p2porg 0x853b0078... Agnostic Gnosis
13484423 0 3593 1764 +1829 liquid_collective 0x8527d16c... Ultra Sound
13485413 5 3638 1867 +1771 0xb67eaa5e... BloXroute Regulated
13483645 1 3546 1784 +1762 0x8527d16c... Ultra Sound
13487208 3 3578 1826 +1752 blockdaemon_lido 0xb67eaa5e... Titan Relay
13488891 5 3602 1867 +1735 0x8527d16c... Ultra Sound
13487196 5 3595 1867 +1728 blockdaemon 0xb26f9666... Titan Relay
13489106 3 3552 1826 +1726 0x88510a78... BloXroute Regulated
13487359 11 3717 1992 +1725 blockdaemon 0x88a53ec4... BloXroute Regulated
13483339 9 3655 1950 +1705 0x8527d16c... Ultra Sound
13488251 6 3584 1888 +1696 figment 0x82c466b9... BloXroute Regulated
13482058 6 3580 1888 +1692 revolut 0x8527d16c... Ultra Sound
13482314 7 3587 1909 +1678 0x8527d16c... Ultra Sound
13483721 3 3492 1826 +1666 ether.fi 0xb26f9666... Titan Relay
13483831 0 3428 1764 +1664 ether.fi 0x8527d16c... Ultra Sound
13486867 12 3676 2012 +1664 blockdaemon 0xb7c5e609... BloXroute Regulated
13484206 0 3427 1764 +1663 blockdaemon 0x8ef8714b... BloXroute Regulated
13483776 3 3489 1826 +1663 stakingfacilities_lido 0x853b0078... BloXroute Max Profit
13483224 8 3587 1930 +1657 0x82c466b9... BloXroute Regulated
13485455 6 3534 1888 +1646 blockdaemon_lido 0x855b00e6... Ultra Sound
13482534 3 3466 1826 +1640 whale_0xdd6c 0x853b0078... BloXroute Max Profit
13485025 3 3455 1826 +1629 blockdaemon_lido 0xb67eaa5e... Titan Relay
13488829 8 3552 1930 +1622 blockdaemon 0x855b00e6... Ultra Sound
13485626 7 3527 1909 +1618 blockdaemon_lido 0xb26f9666... Titan Relay
13488156 0 3380 1764 +1616 blockdaemon 0x850b00e0... BloXroute Regulated
13483079 0 3375 1764 +1611 blockdaemon 0x8a850621... Ultra Sound
13484844 5 3462 1867 +1595 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13488480 0 3358 1764 +1594 0x853b0078... Titan Relay
13482301 5 3455 1867 +1588 blockdaemon 0x8a850621... Titan Relay
13482658 6 3474 1888 +1586 blockdaemon 0x88a53ec4... BloXroute Regulated
13483379 9 3527 1950 +1577 blockdaemon Local Local
13488040 2 3381 1805 +1576 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13488240 1 3360 1784 +1576 blockdaemon_lido 0xb67eaa5e... Titan Relay
13484102 13 3603 2033 +1570 blockdaemon 0x853b0078... Ultra Sound
13486932 13 3603 2033 +1570 blockdaemon_lido 0xb67eaa5e... Titan Relay
13484941 0 3331 1764 +1567 binance 0x823e0146... Flashbots
13485112 1 3349 1784 +1565 0x88857150... Ultra Sound
13485370 0 3324 1764 +1560 0xb26f9666... Titan Relay
13485019 5 3420 1867 +1553 blockdaemon 0x8a850621... Titan Relay
13484662 0 3307 1764 +1543 luno 0x8527d16c... Ultra Sound
13489091 3 3366 1826 +1540 blockdaemon 0xb67eaa5e... Titan Relay
13487910 4 3383 1847 +1536 0x8a850621... Ultra Sound
13486518 10 3506 1971 +1535 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13487678 0 3295 1764 +1531 figment 0x8527d16c... Ultra Sound
13486131 5 3398 1867 +1531 0xb67eaa5e... BloXroute Regulated
13482759 3 3351 1826 +1525 luno 0xb67eaa5e... BloXroute Regulated
13488097 5 3392 1867 +1525 blockdaemon 0x8a850621... Titan Relay
13487813 3 3339 1826 +1513 0xb67eaa5e... BloXroute Max Profit
13487171 13 3544 2033 +1511 blockdaemon 0xb26f9666... Titan Relay
13482959 8 3439 1930 +1509 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13486689 4 3356 1847 +1509 p2porg 0x8527d16c... Ultra Sound
13487932 0 3272 1764 +1508 ether.fi 0x8527d16c... Ultra Sound
13488129 0 3264 1764 +1500 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13483774 8 3429 1930 +1499 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13483569 5 3366 1867 +1499 revolut 0xb67eaa5e... BloXroute Regulated
13483034 11 3489 1992 +1497 blockdaemon 0x8527d16c... Ultra Sound
13484960 6 3385 1888 +1497 blockscape_lido 0x823e0146... Ultra Sound
13484230 0 3260 1764 +1496 blockscape_lido 0xb26f9666... Titan Relay
13488423 0 3256 1764 +1492 blockdaemon 0xb26f9666... Titan Relay
13482791 0 3254 1764 +1490 0xb26f9666... Titan Relay
13484044 3 3312 1826 +1486 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13486229 8 3409 1930 +1479 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13482649 3 3304 1826 +1478 ether.fi 0xb26f9666... Titan Relay
13489154 13 3511 2033 +1478 0x88a53ec4... BloXroute Max Profit
13482145 0 3239 1764 +1475 blockdaemon_lido 0xba003e46... BloXroute Regulated
13486462 8 3404 1930 +1474 blockdaemon_lido 0xb67eaa5e... Titan Relay
13482108 8 3403 1930 +1473 0x850b00e0... BloXroute Regulated
13485959 8 3403 1930 +1473 blockscape_lido 0xb26f9666... Titan Relay
13482263 6 3359 1888 +1471 blockdaemon_lido 0xb67eaa5e... Titan Relay
13488410 4 3317 1847 +1470 blockdaemon_lido 0xb67eaa5e... Titan Relay
13486163 11 3462 1992 +1470 blockdaemon_lido 0xb67eaa5e... BloXroute Regulated
13484601 2 3274 1805 +1469 0x88857150... Ultra Sound
13488299 13 3502 2033 +1469 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13489038 0 3231 1764 +1467 blockdaemon_lido 0x91a8729e... BloXroute Regulated
13485567 7 3375 1909 +1466 everstake 0x88a53ec4... BloXroute Max Profit
13487367 3 3292 1826 +1466 blockdaemon_lido 0x82c466b9... BloXroute Regulated
13484495 5 3333 1867 +1466 0x88a53ec4... BloXroute Regulated
13482694 5 3333 1867 +1466 blockscape_lido 0xb26f9666... Titan Relay
13486632 14 3516 2054 +1462 blockdaemon 0x857b0038... Ultra Sound
13487793 10 3433 1971 +1462 blockdaemon 0x850b00e0... BloXroute Regulated
13489001 7 3370 1909 +1461 blockdaemon 0xb67eaa5e... Titan Relay
13484554 0 3223 1764 +1459 blockdaemon_lido 0x88a53ec4... BloXroute Regulated
13487125 4 3302 1847 +1455 blockdaemon_lido 0x850b00e0... BloXroute Regulated
13482298 5 3322 1867 +1455 blockdaemon 0xb26f9666... Titan Relay
13485561 5 3321 1867 +1454 figment 0x88857150... Ultra Sound
13487684 9 3402 1950 +1452 blockdaemon_lido 0xb67eaa5e... Titan Relay
13486132 11 3443 1992 +1451 ether.fi 0xb67eaa5e... EthGas
13483408 8 3378 1930 +1448 lido 0x855b00e6... Flashbots
13485784 4 3292 1847 +1445 0x850b00e0... BloXroute Regulated
13487425 0 3209 1764 +1445 p2porg 0x823e0146... Flashbots
13482597 17 3561 2116 +1445 0x855b00e6... BloXroute Max Profit
13487524 6 3332 1888 +1444 blockdaemon_lido 0xb26f9666... Titan Relay
13488016 5 3308 1867 +1441 blockdaemon_lido 0xb26f9666... Titan Relay
13488591 1 3225 1784 +1441 revolut 0x856b0004... Ultra Sound
13482741 6 3327 1888 +1439 0xb26f9666... Ultra Sound
13485185 5 3303 1867 +1436 luno 0x853b0078... Ultra Sound
13482302 10 3403 1971 +1432 0x88a53ec4... BloXroute Max Profit
13489123 0 3194 1764 +1430 blockscape_lido 0x856b0004... Aestus
13486460 5 3295 1867 +1428 blockdaemon_lido 0xb26f9666... Titan Relay
13488716 4 3265 1847 +1418 revolut 0x853b0078... Ultra Sound
13487774 1 3199 1784 +1415 blockdaemon_lido 0xb26f9666... Titan Relay
13488654 10 3385 1971 +1414 luno 0xb26f9666... Titan Relay
13486626 3 3238 1826 +1412 0x88a53ec4... BloXroute Max Profit
13488873 3 3236 1826 +1410 blockdaemon_lido 0xb26f9666... Titan Relay
13488315 5 3277 1867 +1410 blockdaemon_lido 0x856b0004... Ultra Sound
13484255 0 3168 1764 +1404 0x823e0146... BloXroute Max Profit
13487265 9 3354 1950 +1404 0x8527d16c... Ultra Sound
13486724 3 3228 1826 +1402 whale_0xdd6c 0xb26f9666... Titan Relay
13483365 0 3165 1764 +1401 stakingfacilities_lido 0x91a8729e... Ultra Sound
13482609 3 3227 1826 +1401 0x853b0078... Aestus
13487394 3 3222 1826 +1396 0x857b0038... Ultra Sound
13483464 3 3222 1826 +1396 0xb26f9666... Titan Relay
13486502 8 3324 1930 +1394 0x88a53ec4... BloXroute Regulated
13483729 2 3199 1805 +1394 0x91b123d8... BloXroute Regulated
13488152 1 3175 1784 +1391 0xb67eaa5e... BloXroute Max Profit
13482953 1 3171 1784 +1387 0x860d4173... BloXroute Max Profit
13488962 6 3272 1888 +1384 blockdaemon_lido 0x91b123d8... BloXroute Regulated
13487841 0 3144 1764 +1380 p2porg 0x852b0070... Agnostic Gnosis
13484969 5 3244 1867 +1377 0xb67eaa5e... BloXroute Regulated
13486107 0 3140 1764 +1376 0x8527d16c... Ultra Sound
13484965 0 3140 1764 +1376 blockscape_lido 0x8527d16c... Ultra Sound
13484983 0 3139 1764 +1375 blockscape_lido 0xac23f8cc... Ultra Sound
13484976 8 3303 1930 +1373 0xb26f9666... Titan Relay
13482400 12 3385 2012 +1373 0xb26f9666... Titan Relay
13483302 0 3134 1764 +1370 blockdaemon 0x82c466b9... BloXroute Regulated
13486688 6 3255 1888 +1367 0xb26f9666... BloXroute Max Profit
13485684 8 3293 1930 +1363 0x850b00e0... BloXroute Regulated
13483323 3 3189 1826 +1363 blockdaemon_lido 0xb26f9666... Titan Relay
13488053 3 3188 1826 +1362 blockdaemon 0xb26f9666... Titan Relay
13485105 5 3229 1867 +1362 blockdaemon_lido 0xb26f9666... Titan Relay
13486296 8 3291 1930 +1361 revolut 0xb26f9666... Titan Relay
13486078 6 3249 1888 +1361 blockdaemon 0xb26f9666... Titan Relay
13487051 3 3186 1826 +1360 everstake 0x823e0146... Flashbots
13482574 14 3414 2054 +1360 kelp 0x850b00e0... BloXroute Max Profit
13483613 0 3121 1764 +1357 0x850b00e0... BloXroute Regulated
13485568 0 3120 1764 +1356 nethermind_lido 0x852b0070... Aestus
13482883 6 3244 1888 +1356 0xb7c5e609... BloXroute Max Profit
13485908 1 3138 1784 +1354 0x853b0078... Ultra Sound
13488256 0 3117 1764 +1353 ether.fi 0xb67eaa5e... BloXroute Regulated
13488238 1 3134 1784 +1350 ether.fi 0x8db2a99d... BloXroute Max Profit
13482135 6 3237 1888 +1349 0x850b00e0... BloXroute Regulated
13488968 9 3299 1950 +1349 blockscape_lido 0xb26f9666... Titan Relay
13482020 3 3174 1826 +1348 0x850b00e0... BloXroute Max Profit
13488416 1 3132 1784 +1348 nethermind_lido 0x823e0146... Flashbots
13486774 8 3277 1930 +1347 revolut 0x8527d16c... Ultra Sound
13484879 3 3172 1826 +1346 figment 0x8527d16c... Ultra Sound
13485832 0 3109 1764 +1345 0x850b00e0... BloXroute Regulated
13482769 12 3357 2012 +1345 0x850b00e0... BloXroute Regulated
13487323 11 3336 1992 +1344 0x8a850621... Ultra Sound
13488266 0 3106 1764 +1342 figment 0x8527d16c... Ultra Sound
13484137 0 3105 1764 +1341 origin_protocol 0x8527d16c... Ultra Sound
13484563 1 3125 1784 +1341 everstake 0x860d4173... Flashbots
13485663 16 3434 2095 +1339 liquid_collective Local Local
13482899 4 3185 1847 +1338 figment 0x8527d16c... Ultra Sound
13483744 5 3205 1867 +1338 nethermind_lido 0xb26f9666... Titan Relay
13485488 0 3101 1764 +1337 0x91a8729e... BloXroute Regulated
13482896 6 3224 1888 +1336 0x88a53ec4... BloXroute Regulated
13483807 1 3120 1784 +1336 0x88a53ec4... BloXroute Max Profit
13485084 0 3099 1764 +1335 p2porg 0xb26f9666... BloXroute Regulated
13485547 3 3161 1826 +1335 p2porg 0x853b0078... BloXroute Max Profit
13483446 11 3326 1992 +1334 0xb7c5e609... BloXroute Max Profit
13483730 4 3178 1847 +1331 p2porg 0x853b0078... Agnostic Gnosis
13483498 18 3468 2137 +1331 0x8a850621... Ultra Sound
13487399 0 3094 1764 +1330 whale_0xe985 0x852b0070... BloXroute Max Profit
13488268 3 3156 1826 +1330 p2porg 0x853b0078... Aestus
13486391 0 3093 1764 +1329 figment 0x8db2a99d... Flashbots
13484348 7 3238 1909 +1329 ether.fi 0x88a53ec4... BloXroute Regulated
13482402 9 3279 1950 +1329 revolut 0xb26f9666... Titan Relay
13482134 9 3274 1950 +1324 blockdaemon_lido 0xb26f9666... Titan Relay
13487773 3 3149 1826 +1323 0x82c466b9... Flashbots
13483104 2 3128 1805 +1323 everstake 0xac23f8cc... Flashbots
13484796 1 3106 1784 +1322 0x856b0004... Aestus
13488484 0 3085 1764 +1321 gateway.fmas_lido 0x8527d16c... Ultra Sound
13484167 1 3105 1784 +1321 0x8db2a99d... Flashbots
13482305 6 3208 1888 +1320 bitstamp 0x8db2a99d... Flashbots
13488216 3 3143 1826 +1317 p2porg 0x8db2a99d... Flashbots
13487582 3 3142 1826 +1316 figment 0xb26f9666... Titan Relay
13484701 1 3100 1784 +1316 0x823e0146... Flashbots
13484562 3 3141 1826 +1315 figment 0x853b0078... Flashbots
13482273 13 3348 2033 +1315 0x88510a78... Flashbots
13488994 2 3119 1805 +1314 everstake 0x8527d16c... Ultra Sound
13485525 0 3077 1764 +1313 0xb67eaa5e... BloXroute Max Profit
13485155 8 3242 1930 +1312 p2porg 0xac23f8cc... Flashbots
13486119 5 3178 1867 +1311 ether.fi 0xb67eaa5e... BloXroute Max Profit
13482714 4 3157 1847 +1310 p2porg 0x88857150... Ultra Sound
13488026 0 3074 1764 +1310 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13485452 12 3322 2012 +1310 blockdaemon_lido 0x853b0078... Ultra Sound
13486278 7 3218 1909 +1309 everstake 0xb67eaa5e... BloXroute Max Profit
13486118 3 3134 1826 +1308 p2porg 0xac23f8cc... Flashbots
13485466 4 3154 1847 +1307 whale_0x23be 0x853b0078... Aestus
13486370 7 3216 1909 +1307 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13482350 4 3152 1847 +1305 0x8527d16c... Ultra Sound
13483455 0 3069 1764 +1305 gateway.fmas_lido 0x8527d16c... Ultra Sound
13484706 0 3069 1764 +1305 p2porg 0x8527d16c... Ultra Sound
13482359 11 3297 1992 +1305 blockdaemon 0xb26f9666... Titan Relay
13488751 3 3131 1826 +1305 0xb67eaa5e... BloXroute Max Profit
13483403 6 3193 1888 +1305 bitstamp 0x860d4173... BloXroute Max Profit
13483261 6 3193 1888 +1305 0x88a53ec4... BloXroute Max Profit
13483635 2 3110 1805 +1305 kelp 0xb26f9666... Titan Relay
13482970 3 3129 1826 +1303 p2porg 0x88a53ec4... BloXroute Max Profit
13486340 5 3170 1867 +1303 ether.fi 0xb26f9666... Titan Relay
13482926 7 3210 1909 +1301 gateway.fmas_lido 0xb67eaa5e... BloXroute Regulated
13485200 1 3085 1784 +1301 gateway.fmas_lido 0x8527d16c... Ultra Sound
13482639 3 3126 1826 +1300 0xb67eaa5e... BloXroute Max Profit
13486530 11 3291 1992 +1299 ether.fi 0x850b00e0... Ultra Sound
13486741 3 3125 1826 +1299 0xb26f9666... BloXroute Max Profit
13487361 3 3125 1826 +1299 blockscape_lido 0x88857150... Ultra Sound
13488081 1 3083 1784 +1299 0x8527d16c... Ultra Sound
13485991 1 3083 1784 +1299 gateway.fmas_lido 0x8527d16c... Ultra Sound
13487029 3 3123 1826 +1297 mantle 0x8527d16c... Ultra Sound
13487711 0 3060 1764 +1296 ether.fi 0xb67eaa5e... BloXroute Regulated
13485609 13 3327 2033 +1294 everstake 0x853b0078... Agnostic Gnosis
13488260 3 3119 1826 +1293 everstake 0xb67eaa5e... BloXroute Max Profit
13482466 0 3056 1764 +1292 everstake 0xb26f9666... Titan Relay
13484012 5 3159 1867 +1292 p2porg 0x8527d16c... Ultra Sound
13487349 3 3117 1826 +1291 blockscape_lido 0x8527d16c... Ultra Sound
13488859 14 3345 2054 +1291 0x8a850621... Ultra Sound
13487306 10 3262 1971 +1291 p2porg 0x853b0078... Aestus
13487462 6 3179 1888 +1291 p2porg 0x853b0078... BloXroute Max Profit
13486876 3 3116 1826 +1290 0xb26f9666... Titan Relay
13488915 1 3073 1784 +1289 p2porg 0x853b0078... Titan Relay
13484870 0 3052 1764 +1288 p2porg 0x853b0078... Flashbots
13488095 6 3176 1888 +1288 p2porg 0x850b00e0... BloXroute Regulated
13485933 13 3321 2033 +1288 blockdaemon_lido 0xb26f9666... Titan Relay
13485010 4 3134 1847 +1287 0xb67eaa5e... BloXroute Regulated
13485017 3 3113 1826 +1287 0x88857150... Ultra Sound
13487388 1 3071 1784 +1287 mantle 0xb26f9666... Titan Relay
13483634 5 3153 1867 +1286 0x8a850621... Ultra Sound
13483942 5 3152 1867 +1285 p2porg 0x853b0078... BloXroute Max Profit
13486498 1 3069 1784 +1285 gateway.fmas_lido 0x8527d16c... Ultra Sound
13482596 0 3047 1764 +1283 ether.fi 0x91a8729e... BloXroute Max Profit
13486595 5 3150 1867 +1283 blockscape_lido 0x8527d16c... Ultra Sound
13488790 0 3046 1764 +1282 p2porg 0xb67eaa5e... BloXroute Regulated
13483309 13 3315 2033 +1282 blockdaemon 0x8527d16c... Ultra Sound
13484812 5 3149 1867 +1282 0x8a850621... Ultra Sound
13484113 3 3107 1826 +1281 everstake 0x853b0078... BloXroute Max Profit
13487252 3 3106 1826 +1280 0x8a850621... Ultra Sound
13484998 0 3043 1764 +1279 ether.fi 0x852b0070... Aestus
13488032 0 3042 1764 +1278 ether.fi 0x82c466b9... EthGas
13483170 0 3042 1764 +1278 coinbase 0xb67eaa5e... BloXroute Max Profit
13487539 0 3041 1764 +1277 p2porg 0xb26f9666... BloXroute Max Profit
13487761 3 3102 1826 +1276 everstake 0xb26f9666... Aestus
13482173 3 3102 1826 +1276 ether.fi 0xb26f9666... Titan Relay
13487445 6 3164 1888 +1276 gateway.fmas_lido 0x823e0146... Flashbots
13487318 1 3060 1784 +1276 p2porg 0xac23f8cc... Flashbots
13482006 3 3101 1826 +1275 0xb26f9666... Titan Relay
13484677 0 3037 1764 +1273 everstake 0x88a53ec4... BloXroute Regulated
Total anomalies: 257

Anomalies by relay

Which relays produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by relay
    relay_counts = df_outliers["relay"].value_counts().reset_index()
    relay_counts.columns = ["relay", "anomaly_count"]
    
    # Get total blocks per relay for context
    df_anomaly["relay"] = df_anomaly["winning_relays"].apply(lambda x: x[0] if len(x) > 0 else "Local")
    total_by_relay = df_anomaly.groupby("relay").size().reset_index(name="total_blocks")
    
    relay_counts = relay_counts.merge(total_by_relay, on="relay")
    relay_counts["anomaly_rate"] = relay_counts["anomaly_count"] / relay_counts["total_blocks"] * 100
    relay_counts = relay_counts.sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=relay_counts["relay"],
        x=relay_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=relay_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([relay_counts["total_blocks"], relay_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=350,
    )
    fig.show(config={"responsive": True})

Anomalies by proposer entity

Which proposer entities produce the most propagation anomalies?

Show code
if n_anomalies > 0:
    # Count anomalies by proposer entity
    proposer_counts = df_outliers["proposer"].value_counts().reset_index()
    proposer_counts.columns = ["proposer", "anomaly_count"]
    
    # Get total blocks per proposer for context
    df_anomaly["proposer"] = df_anomaly["proposer_entity"].fillna("Unknown")
    total_by_proposer = df_anomaly.groupby("proposer").size().reset_index(name="total_blocks")
    
    proposer_counts = proposer_counts.merge(total_by_proposer, on="proposer")
    proposer_counts["anomaly_rate"] = proposer_counts["anomaly_count"] / proposer_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    proposer_counts = proposer_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=proposer_counts["proposer"],
        x=proposer_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=proposer_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([proposer_counts["total_blocks"], proposer_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by builder

Which builders produce the most propagation anomalies? (Truncated pubkeys shown for MEV blocks)

Show code
if n_anomalies > 0:
    # Count anomalies by builder
    builder_counts = df_outliers["builder"].value_counts().reset_index()
    builder_counts.columns = ["builder", "anomaly_count"]
    
    # Get total blocks per builder for context
    df_anomaly["builder"] = df_anomaly["winning_builder"].apply(
        lambda x: f"{x[:10]}..." if pd.notna(x) and x else "Local"
    )
    total_by_builder = df_anomaly.groupby("builder").size().reset_index(name="total_blocks")
    
    builder_counts = builder_counts.merge(total_by_builder, on="builder")
    builder_counts["anomaly_rate"] = builder_counts["anomaly_count"] / builder_counts["total_blocks"] * 100
    
    # Show top 15 by anomaly count
    builder_counts = builder_counts.nlargest(15, "anomaly_rate").sort_values("anomaly_rate", ascending=True)
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        y=builder_counts["builder"],
        x=builder_counts["anomaly_count"],
        orientation="h",
        marker_color="#e74c3c",
        text=builder_counts.apply(lambda r: f"{r['anomaly_count']}/{r['total_blocks']} ({r['anomaly_rate']:.1f}%)", axis=1),
        textposition="outside",
        hovertemplate="<b>%{y}</b><br>Anomalies: %{x}<br>Total blocks: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([builder_counts["total_blocks"], builder_counts["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=150, r=80, t=30, b=60),
        xaxis=dict(title="Number of anomalies"),
        yaxis=dict(title=""),
        height=450,
    )
    fig.show(config={"responsive": True})

Anomalies by blob count

Are anomalies more common at certain blob counts?

Show code
if n_anomalies > 0:
    # Count anomalies by blob count
    blob_anomalies = df_outliers.groupby("blob_count").size().reset_index(name="anomaly_count")
    blob_total = df_anomaly.groupby("blob_count").size().reset_index(name="total_blocks")
    
    blob_stats = blob_total.merge(blob_anomalies, on="blob_count", how="left").fillna(0)
    blob_stats["anomaly_count"] = blob_stats["anomaly_count"].astype(int)
    blob_stats["anomaly_rate"] = blob_stats["anomaly_count"] / blob_stats["total_blocks"] * 100
    
    fig = go.Figure()
    
    fig.add_trace(go.Bar(
        x=blob_stats["blob_count"],
        y=blob_stats["anomaly_count"],
        marker_color="#e74c3c",
        hovertemplate="<b>%{x} blobs</b><br>Anomalies: %{y}<br>Total: %{customdata[0]:,}<br>Rate: %{customdata[1]:.1f}%<extra></extra>",
        customdata=np.column_stack([blob_stats["total_blocks"], blob_stats["anomaly_rate"]]),
    ))
    
    fig.update_layout(
        margin=dict(l=60, r=30, t=30, b=60),
        xaxis=dict(title="Blob count", dtick=1),
        yaxis=dict(title="Number of anomalies"),
        height=350,
    )
    fig.show(config={"responsive": True})